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Chapter 1

Introduction

One of the main subjects of theoretical computer science is complexity theory

which is more or less concerned with determining the intrinsic complexity of

computational problems. A very important aim of complexity theory is to clas-

sify computational problems into different complexity classes defined by various

bounds and types of resources (usually time and space). For such classifica-

tion, the difficulty of some given computational problems within a complexity

class can be meaningfully compared by using the fundamental concept of reduc-

tions. Thereby, in many instances the hardest of all computational problems in

a complexity class can be identified, they are called the complete problems for

the considered complexity class. Another obvious aim of complexity theory is to

search for the interrelationship between various complexity classes.

Linear algebra is one of the most known mathematical disciplines because of

its rich theoretical foundations and its many useful applications to science and

engineering. Solving systems of linear equations and computing determinants are

two examples of fundamental problems in linear algebra that have been studied

for a long time ago. Leibnitz found the formula for determinants in 1693, and in

1750 Cramer presented a method for solving systems of linear equations, which

is today known as Cramer’s Rule (see [AM87]). This is the first foundation stone

on the development of linear algebra and matrix theory. At the beginning of

the evolution of digital computers, the matrix calculus has received very much

attention. John von Neumann and Alan Turing were the world-famous pioneers

of computer science. They introduced significant contributions to the develop-

ment of computer linear algebra. In 1947, von Neumann and Goldstine [vNG47]

investigated the effect of rounding errors on the solution of linear equations. One

year later, Turing [Tur48] initiated a method for factoring a matrix to a product

of a lower triangular matrix with an echelon matrix (the factorization is known
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CHAPTER 1. INTRODUCTION

as LUdecomposition). At present, computer linear algebra is broadly of interest.

This is due to the fact that the field is now recognized as an absolutely essen-

tial tool in many branches of computer applications that require computations

which are lengthy and difficult to get right when done by hand, for example: in

computer graphics, in geometric modeling, in robotics, etc.

In the complexity-theoretic viewpoint, in particular with respect to parallel

computations, computational problems in linear algebra provide a sure enough

interesting topic. The present thesis focuses on this topic. The main goal of this

thesis is to determine precisely the complexity of some fundamental problems

in linear algebra. On the other hand, the interrelationship between complexity

classes in which the considered problems are located will be clarified.

The motivation for this thesis comes mainly from the purpose to understand

the complexity of computational problems in linear algebra. Many tasks of linear

algebra are recognized usually as elementary problems, but the precise complexity

of them was not known for a long time ago. Computing the determinant is an ex-

ample. There are polynomial-time algorithms for the determinant (see [vzGG99],

Part I, Chapter 1, Section 5.5., Algorithm 5.10). With respect to parallel com-

putations, the problem of computing determinants attracted a great attention.

It was shown in [Ber84, BvzGH82, Chi85, Csa76] that the determinant is com-

putable simultaneously in polylog-time by using a polynomial number of proces-

sors. In particular, the result of Berkowitz [Ber84] showed that the problem of

computing the determinant is solvable by uniform Boolean circuits of O(log2n)-

depth and polynomial-size, i.e. the determinant is in the class NC2 (see Chapter 2

below for more detail on NC and its subclasses). Many computational problems

in linear algebra are reducible in a natural way to computing determinants, and

hence they are known to be in NC2. However, NC2 does not capture the ex-

act complexity of linear-algebraic problems. Taking in consideration that the

determinant is not known to be NC2-complete, it is natural to ask for which

complexity class this problem is complete, and whether the complexity of other

fundamental problems in linear algebra can be found.

Counting problems and counting classes

Counting problem is a type of computational problems, which is more difficult

than decision problem and search problem. The major difference between these

three types of computational problems can be explained as follows: a decision

problem asks whether a solution exists, a search problem demands to compute

2



a solution, but a counting problem counts the number of all solutions. The

perfect matching problem for graphs seems to be a good example: for a given

graph G, the decision problem asks whether there is a perfect matching in G,

the search problem demands to construct one of the perfect matchings in G

(if one exists), and the counting version requires to compute the number of all

perfect matchings in G. Although the perfect matching decision problem can

be solved in deterministic polynomial-time [Edm65], counting the number of all

perfect matchings in a graph is a very difficult problem for which maybe no

polynomial-time algorithm can be developed. Just now is the question: How

difficult the problem of counting the number of all perfect matchings in a graph

will be stepped?.

The two most known time-complexity classes are P and NP. P is the class

of all decision problems solvable in deterministic polynomial-time, and NP is

the class of all decision problems solvable in nondeterministic polynomial-time.

A deterministic polynomial-time algorithm is usually called efficient. Therefore,

one can intuitively say that P contains only efficient computational problems. In

contrast to P, NP-complete problems are called intractable, since no polynomial-

time algorithm for any of these problems is known today. A large number of

computational problems were shown by Cook and Karp [Coo71, Kar72] to be NP-

complete. Whether there is a polynomial-time algorithm for any NP-complete

problem is a formulation (in the algorithmic viewpoint) for the number-one open

question P
?
= NP in theoretical computer science.

Other complexity classes beyond NP were (and are) widely of interest. One

of them is the counting class #P which is extended from NP among the most

natural way. In 1979, Valiant [Val79b, Val79c] initiated the study of the compu-

tational complexity of counting problems. He introduced the counting class #P

that counts the number of solutions of NP-problems, or equivalently, the number

of all accepting computation paths of a nondeterministic Turing machine on an

input.

Computing the number of all truth assignments satisfying a given Boolean ex-

pression is the counting version corresponding to the very popular NP-complete

decision problem SAT. This counting problem is known to be complete for

#P (the proof can be found in [Pap94], Chapter 18, page 442). More interest-

ingly, there are #P-complete counting problems derived from problems solvable

in polynomial-time. For example: one can decide in polynomial-time whether a

bipartite graph has a perfect matching [Edm65], but the number of all perfect

matchings in a bipartite graph is a #P-complete function [Val79b]. Moreover,

since the number of all perfect matchings in a bipartite graph G is equal to the
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CHAPTER 1. INTRODUCTION

permanent of the adjacency matrix of G, the problem of computing the perma-

nent of 0-1 matrices is also #P-complete.

In the logspace setting, some interesting classes related to the number of

accepting computation paths of a nondeterministic logspace Turing machine (NL

machine) are defined. Further on, we mention briefly some of these classes that

are characterized by linear-algebraic problems.

The starting point in this direction is the class #L. In analogy to #P, a

function of #L counts intuitively the number of all accepting computation paths

of an NL machine on an input. Counting the number of all paths from node

s to node t in an acyclic directed graph is a natural example of #L-complete

functions. Furthermore, there are also #L-complete functions that are descended

from linear algebra. An example of them is the problem of computing an element

of the power matrix Am, for a given 0-1 matrix A and an exponent m ≥ 1.

Due to the fact that functions in #P are restricted to nonnegative integers,

Fenner, Fortnow, and Kurtz [FFK94] extended #P to the class GapP which is

the closure of #P under subtraction, i.e. any difference of two #P functions is a

GapP function. The permanent of an integer matrix is an example of functions in

GapP. Corresponding to GapP in the logspace setting is the class GapL defined

as the class of differences of #L-functions. Since the determinant of an integer

matrix is a GapL-complete function [Dam91, Tod91, Vin91, Val92], GapL seems

to be one of the most suitable classes for elementary linear-algebraic problems.

The huge difference in the complexity of the permanent and the determinant

is somewhat surprising because of the fact that these functions have almost the

same cofactor expansion1, the only difference comes from the sign. This difference

is more obvious by the following formulas

det(A) =
∑

δ∈Sn

sign(δ)
n∏

i=1

ai,δ(i) , perm(A) =
∑

δ∈Sn

n∏

i=1

ai,δ(i),

where A = [ai,j ] is a matrix of order n, Sn is the symmetric permutation group

of {1, 2, . . . , n}, and sign(δ) is the sign of the permutation δ.

GapL turns out to capture the complexity of many other natural problems in

linear algebra. For example, computing an element in integer matrix powering,

or iterated integer matrix multiplication, is complete for GapL. There are also

graph-theoretic problems which are complete for GapL [Tod91] (see also [ST98]).

An example is the problem of counting the number of all shortest s-t-paths in a

given directed graph G, for given two distinguished nodes s and t.

1Note that GapL ⊆ GapP. However, there is no proof yet that GapL 6= GapP.
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Important and fundamental decision problems can be derived from GapL

problems. For example: testing singularity of matrices, i.e. testing if the deter-

minant of a given matrix is zero. Probably, the singularity problem is relevant

for computing the inverse of a matrix because of the fact that, often in practice,

it is necessary to decide whether there exists the inverse before computing it.

The importance of decision problems derived from GapL problems motivates

onward the complexity class C=L (Exact Counting in Logspace). Allender and

Ogihara [AO96] introduced C=L as the class of decision problems that verify

GapL functions. Obviously, the class C=L captures the complexity of problems

defined in a most natural way because GapL-complete functions yield decision

problems that are complete for C=L. For example, verifying the determinant is

a C=L-complete problem [AO96, ST98].

Apart from the importance that C=L characterizes many fundamental prob-

lems in linear algebra, C=L is widely of interest because it is still open whether

this class is closed under complement [ABO99]. As usual in complexity theory, it

is plausible to expect that there is a positive answer to this open question because

the following classes related to C=L are closed under complement.

• NL (Nondeterministic Logspace) [Imm88, Sze88].

• SL (Symmetric Logspace) [NTS95].

• PL (Probabilistic Logspace) [Ogi98].

• UL/poly (nonuniform Unambiguous Logspace) [RA00], this result gives rise

to conjecture that (uniform) UL is closed under complement as well.

Actually, together with the wish to understand the complexity of fundamental

problems in linear algebra, the open question C=L
?
= coC=L and other unsolved

questions about classes related to counting the number of accepting computation

paths of an NL machine motivate the present thesis.

This thesis

The main contribution of this thesis is in determining the complexity of some

problems in linear algebra.

The problems considered in this thesis can be divided into two categories. The

first category consists of problems related to the structure of a matrix: about the

characteristic polynomial, the minimal polynomial, and the invariant factor sys-

tem. Testing similarity and testing diagonalizability of matrices, two classical
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CHAPTER 1. INTRODUCTION

problems, belong to the first category. Problems in the second category are re-

lated to counting the eigenvalues: the rank, the inertia, and stability of matrices.

The main results presented in Chapter 3 and 4 of this thesis have been pub-

lished in refereed form in the papers [HT00, HT01, HT03a, HT02b, HT02a,

HT03b].

The contribution of Chapter 5 hasn’t been published yet. Chapter 5 deals

with the complexity of the unique perfect matching problem, and with some

necessary and sufficient conditions for collapsing logspace counting classes.

In the remaining text of this chapter we explain in detail the backgrounds

and the results of this thesis.

The characteristic polynomial

Suppose the output of a computational problem is a matrix or a tuple of numbers.

There is a subtlety one has to be careful about: for instance, by saying that integer

matrix powering is in GapL we mean that each element of the resulting power

matrix can be computed within GapL, i.e., for an n × n matrix A, this yields

n2 GapL-functions according to n2 elements of the power matrix Am, and each

of them is a GapL-complete computation. Now there are two variants of the

verification version derived from matrix powering:

1. one has to verify one element of Am, i.e. verifying (Am)i,j = a, for given

integer matrix A, integers a, numbers m, i, and j,

2. the other has to verify all elements of Am, i.e., verifying Am = B, for given

integer matrices A and B, and a number m.

These both decision problems are complete for C=L. But the situation can be

different: an example taken from [ST98] is provided by the inverse of a matrix

(assume that the inverse exists). There are again two following variants of the

verification version.

• v-InverseElement (verifying one element of the inverse)

Input : A regular n× n integer matrix A, integers i, j, a, and b 6= 0.

Question : (A−1)i,j = a
b
?

• v-Inverse (verifying the inverse)

Input: Two regular matrices A and B.

Question: A−1 = B?

6



The first problem, v-InverseElement, is known to be complete for C=L. The

second problem can be solved by computing the product AB and comparing it

with the identity matrix I. Testing whether AB = I can be done in NC1, a

subclass of C=L. Thus v-Inverse is in NC1. Now, under the assumption that

there is a logspace reduction from v-InverseElement to v-Inverse, there

exists always a positive answer to the most prominent open question NL
?
= L (L

is the deterministic logspace)! Obviously, in the second decision problem above,

namely v-Inverse, we put too much information into the input. This is the

reason why the problem of verifying one element is harder than the problem of

verifying all elements of the inverse2.

The observation about two different variants of the inverse decision prob-

lem inspires the problem of verifying the characteristic polynomial by Santha

and Tan [ST98]: given a matrix A and the coefficients of a polynomial p, one

has to verify whether p is the characteristic polynomial of A. It was shown by

Berkowitz [Ber84] that the coefficients of the characteristic polynomial of a ma-

trix are reducible to the elements of an iterated matrix multiplication. Therefore,

verifying one or all these coefficients can be done in C=L (see Chapter 3, Sec-

tion 3.1.1 for more detail). Since the determinant is the constant term (apart

from the sign) of the characteristic polynomial, it is obvious to see that verify-

ing one coefficient of the characteristic polynomial is a C=L-complete problem.

Now, with the different complexities of two in above mentioned inverse prob-

lems in mind, v-InverseElement and v-Inverse, the question is: is it easier

to verify all the coefficients of the characteristic polynomial than to verify just

one of them? We show in Chapter 3, Section 3.1.2 that this is not true, and

in particular, verifying the characteristic polynomial is still C=L-complete. This

result is the positive answer to an open problem by Santha and Tan [ST98]:

whether verifying the characteristic polynomial of a matrix is complete for the

class m− V −DET (note that the latter class and C=L are the same).

The minimal polynomial, similarity, and diagonalizability

Let A be a square matrix. Obviously, the invariant factors of A are significant

because these factors determine completely the structure of A. For a matrix, the

invariant factors are usually given by the rational canonical form of the matrix

(the word rational corresponds to the fact that the rational canonical form can

be computed by using only rational operations on the elements of the matrix).

The minimal polynomial of A is known to be the invariant factor with the highest

2Note however that it is still open whether NC1 6= C=L.
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CHAPTER 1. INTRODUCTION

degree under all invariant factors of A.

Due to the importance of the invariant factors, and in particular, of the mini-

mal polynomial, algorithms for the rational canonical form have been intensively

studied before. Both problems, computing the rational canonical form as well

as computing the minimal polynomial of a matrix, can be done in randomized

NC2 [KS87]. For integer matrices, there are even NC2-algorithms [Vil97]. The

best known deterministic algorithm for the minimal polynomial of an n×n inte-

ger matrix makes O(n3) field operations [Sto98]. Moreover, some procedures to

compute the rational canonical form can be found in the standard textbooks of

linear algebra (e.g. [Gan77a, Gan77b, HJ85, HJ91]).

The invariant factors and the minimal polynomial of an integer matrix be-

long to the topic of this thesis. By taking a different approach to compute the

minimal polynomial of an integer matrix, we show in Chapter 3 that the problem

of computing the minimal polynomial can be reduced to matrix powering and

solving systems of linear equations. Therefore, the minimal polynomial can be

computed within the TC0-closure of GapL. Note that this closure, denoted by

TC0(GapL), is a subclass of TC1 which is contained in NC2. Furthermore, we

show that the problem of computing the invariant factors is hard for GapL.

With respect to the verification of the minimal polynomial of a matrix, for a

square matrix A, observe that it is the same situation as for the characteristic

polynomial: deciding whether the constant term d0 of the minimal polynomial

of A is identically equal to zero is a C=L-complete problem because of the fact:

d0 = 0 if and only if A is singular. By comparing these two polynomials, there is

a question: Is verifying the minimal polynomial complete for C=L as the problem

of verifying the characteristic polynomial? We show that verifying the minimal

polynomial can be done in C=L ∧ coC=L, the class of sets that can be written

as the conjunction of sets in C=L and in coC=L, and it is hard for C=L.

A difference between the characteristic polynomial and the minimal polyno-

mial of a matrix is composed of their degrees. For a matrix of order n, although

the degree of its characteristic polynomial is exactly n, the degree of its minimal

polynomial is at most n. Actually, determining the degree of the minimal poly-

nomial is a fundamental and important task in linear algebra. The complexity of

the problem of computing the degree of the minimal polynomial is investigated

in Chapter 3, Section 3.2.3 of this thesis where it is shown that this problem is

computationally equivalent to the problem of computing matrix rank. Note that

the rank of matrix A, denoted by rank(A), is the number of all linearly indepen-

dent rows of A. The complexity of matrix rank has been studied systematically

by Allender, Beals, and Ogihara [ABO99]. They showed that, given a matrix A

8



and a number r, the problem of

• deciding whether rank(A) ≤ r is C=L-complete,

• deciding whether rank(A) = r is complete for C=L ∧ coC=L, and

• computing a bit of rank(A) is complete for AC0(C=L).

Similarly to these results we show that the problem of

• deciding whether the degree of the minimal polynomial is less than some

given m is C=L-complete,

• deciding whether the degree of the minimal polynomial is equal to some

given m is complete for C=L ∧ coC=L, and

• computing a bit of the degrees of the minimal polynomial is complete for

AC0(C=L).

As mentioned before, the problem of deciding whether the constant term d0

of the minimal polynomial is equal to zero is still C=L-complete. Let’s consider

the constant term of the characteristic polynomial: this is a GapL-complete

function and the corresponding verification problem is complete for C=L. By

the minimal polynomial, the situation is inverted: from the C=L completeness

result of the decision problem whether the constant term d0 is identically equal

to zero we cannot definitely say that the computation of d0 is GapL-complete.

It is natural to ask whether the constant term of the minimal polynomial can be

computed in GapL, too. We show that this question is strongly connected to

another open problem about C=L, namely if the constant term of the minimal

polynomial can be computed in GapL, then C=L is closed under complement .

This is an immediate consequence of a hardness result: the problem of deciding

whether two matrices have the same constant term of the minimal polynomials

is complete for AC0(C=L). Our results on the constant term of the minimal

polynomial offer a new point of attack to the open question of whether C=L is

closed under complement.

A fundamental topic in linear algebra is the study of equivalence relations on

matrices that naturally arise in theory and in applications. Similarity of matrices

is one of such equivalence relations: two square matrices A and B are similar if

there exists a nonsingular transformation matrix P such that A = P−1BP . A

fact in linear algebra states that A and B are similar if and only if they have

the same rational canonical form. Santha and Tan [ST98] observed that testing

9
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similarity of two matrices can be done in AC0(C=L). The question whether the

problem of testing similarity of matrices is AC0(C=L)-complete was still open

in [ST98]. In Chapter 3, Section 3.3.1 we give a positive answer to this question:

the similarity problem is complete for AC0(C=L).

Related to similarity is the problem of deciding whether a matrix is diago-

nalizable. A matrix is called diagonalizable if it is similar to a diagonal matrix.

We show in Chapter 3, Section 3.3.2 that testing diagonalizability of matrices is

AC0(C=L)-complete as well as testing similarity. We extend the result to simul-

taneous diagonalizability which is the problem of deciding whether all k given

matrices are diagonalizable by the same diagonalizing matrix.

Matrix inertia for testing stability and congruence

Besides the similarity relation on matrices, there are still two other relations,

namely equivalence and congruence of matrices. Matrices A and B are equivalent

if there are nonsingular matrices P and Q such that A = PBQ. Actually, testing

equivalence of matrices is equivalent to computing the rank of a matrix, i.e. it is

complete for AC0(C=L).

Note that congruence of matrices is defined only for symmetric matrices: two

symmetric matrices A and B are congruent if there exists a nonsingular matrix

P such that A = PBP T . Sylvester’s Law of Inertia states that matrices A and

B are congruent if and only if they have the same inertia. Hence, an approach

towards the inertia of a symmetric matrix is useful for testing matrix congruence.

In this direction, we give an approach towards the inertia of an arbitrary square

matrix. In general, the inertia of a square matrix A is defined to be the triple of

the number of eigenvalues of A, counting multiplicities, with positive, negative,

and zero real part, respectively. Matrix inertia belongs to a difficult topic in

linear algebra. In the linear-algebraic context, the inertia problem is well known

under alias the problem of Routh-Hurwitz (see e.g. [Gan77b], Volume II, Chapter

XV). Chapter 4 of this thesis studies the complexity of matrix inertia and its

related problems.

A simple idea to compute the inertia could be to determine all the roots

of the characteristic polynomial of the given matrix. With the NC2-algorithm

provided by Neff and Reif [Nef94, NR96] these roots can be approximated to

some precision [ABO]. However, it is not clear to what precision we have to

approximate a root in order to tell it apart from zero. The result by Neff and

Reif is different from our approach because our aim is to compute precisely the

inertia. Using Routh-Hurwitz’s Theorem, we show that the inertia of a matrix

10



(under the restrictions of the Routh-Hurwitz Theorem) can be computed in the

probabilistic logspace PL, and furthermore, the inertia is hard for PL.

Consider the classical verification of the inertia: for a given square matrix A

and integers p, n, and z, one has to decide whether (p,n,z) is the inertia of A.

We show in Section 4.1 that for certain matrices the verification of the inertia

is complete for PL. Verifying the inertia is a general version for the decision

problem whether a system of differential equations is stable, a important task in

engineering science. Note that a system of differential equations is stable if and

only if its coefficient matrix is stable, i.e. all eigenvalues of its coefficient matrix

have negative real parts. We show in Section 4.2 that testing stability of matrices

is complete for PL.

By modifying the standard Routh-Hurwitz method, we show in Section 4.1

that the inertia of a symmetric integer matrix can be computed within PL. It

follows that testing congruence of matrices can be done in PL. In addition, we

show that AC0(C=L) is a lower bound for the latter problem. Note that there

are deterministic sequential algorithms to compute the inertia of a symmetric

integer matrix, an example of them can be found in [For00].

Unique perfect matching

The problem of deciding whether a graph has a perfect matching is a classical

example for which there are polynomial-time algorithms [Edm65] and random-

ized NC algorithms [KUW86, MVV87], but at present no fast parallel algorithm

in deterministic NC has been found. Whether there is a deterministic NC al-

gorithm for this decision problem is an outstanding open question in the area of

parallel computation. Many researchers believe that the answer to this question

lies in the affirmative.

The perfect matching problem can be equivalently represented as two linear-

algebraic problems: given graph G, one asks whether the symbolic Tutte matrix

corresponding to G is nonsingular [Tut47], the other asks whether the permanent

of the 0-1 adjacency matrix of G is positive. Note that the problem of comput-

ing the symbolic determinant in variables x1, x2, . . . , xm is very hard: even the

problem of deciding whether a symbolic determinant contains a nonzero multi-

ple of the term x1x2 · · ·xk is NP-complete (see e.g. [Pap94], Problem 11.5.4).

Therefore, one can believe that an algorithm for solving (in deterministic NC)

the perfect matching problem would require some advances and tools of (linear)

algebra.

Although it is still open whether the perfect matching problem belongs to
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NC, there are deterministic NC algorithms for some of its special cases. An

example of them is for the unique perfect matching problem where one has to

decide whether a given graph has only one perfect matching. The unique perfect

matching problem for bipartite graphs has been studied first of all by Rabin

and Vazirani [RV89], and later by Kozen et al. [KVV85] (see also [Vaz93]). In

Chapter 5 we redemonstrate the problem as a new example of graph theoretic

problems that can be solved in C=L. Another motivation for our interest in

the unique perfect matching problem comes from a totally unrelated subject, i.e.

from the question: which class is characterized by this problem. Furthermore,

we show that the problem is hard for NL and that the unique perfect matching

in a given graph can be constructed in GapL.

Conditions for collapsing logspace counting hierarchies

Allender, Ogihara, and Beals [ABO99] noted that whether C=L is closed under

complement is more or less (with respect to the used notions of reducibility)

equivalent to the open question by Von zur Gathen [vzG93]: Is there a reduction

from the problems of deciding whether given rational vectors are linearly indepen-

dent (INDEPENDENCE) to the problem of deciding whether a rational matrix

is singular (SINGULAR)? C=L
?
= coC=L is an interesting question because

a positive answer to it would close some gaps between lower and upper bounds

on the complexity of some fundamental problems in linear algebra, and on the

other hand, many still unknown relations between small complexity classes in the

logspace setting would be clarified. The question seems to be simple, although

at present no affirmative answer is known.

A part of Chapter 5 discusses the mentioned open question by showing some

necessary and sufficient conditions for the collapse of the C=L hierarchy. More

precisely, we show that C=L = coC=L if and only if for given matrix A one

can compute in GapL two numbers r and s such that the rank of A is equal to

the fraction r
s
. A condition for C=L = coC=L is similarly established over the

degree of the minimal polynomial.

Obviously, C=L = coC=L if the matrix rank can be computed in GapL.

Is the rank of a matrix computable in GapL? In Chapter 5, we show that the

latter happens if and only if C=L = SPL. In analogy to the class SPP [FFK94],

SPL [ARZ99] is the class of all languages having characteristic functions in

GapL. Allender and Ogihara [AO96] noted that there is no reason to believe

that NL is a subset of (uniform) SPL. It follows that there is no reason to expect

that the rank of a matrix is computable in GapL.

12



Similarly to the conditions concerning the rank, for further collapse of PL we

determine some conditions concerning matrix rank. In particular, we show that

PL = SPL if and only if the signature, or the number of all positive eigenvalues

of a symmetric matrix can be computed in GapL.

Organization of this thesis

The present thesis consists of five chapters. The remainder of this thesis is orga-

nized as follows.

In preliminary Chapter 2, we describe briefly some basic notions, definitions,

and concepts of complexity theory and linear algebra that are used throughout

this thesis.

In Chapter 3, we study mainly the rational canonical form of matrices; the

results on the characteristic polynomial, the invariant factor system, and the

minimal polynomial are presented. Furthermore, the chapter treats the problem

of testing similarity and diagonalizability of matrices.

In Chapter 4, we investigate the complexity of problems concerning inertia,

stability, and congruence of matrices.

In Chapter 5, after the unique perfect matching problem we show some nec-

essary and sufficient conditions for collapsing logspace counting hierarchies.

This thesis ends with a summary of results and with some open problems.
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Chapter 2

Preliminaries

This chapter describes some basic materials, standard definitions and nota-

tions that are used though the thesis. The specified preliminaries will be

given at the corresponding places of their use. We assume familiarity with

fundamental notions and concepts of complexity theory as well as with basic

linear algebra that can be found in standard textbooks in the area of com-

plexity theory (e.g. [Pap94, BDG88, BDG91, HO02]), and of linear algebra

(e.g. [Gan77a, Gan77b, HJ85, HJ91]), respectively. This chapter consists of two

sections concerning linear algebra and complexity theory, respectively.

2.1 Linear algebra

2.1.1 Basic notations

We gather some standard notations from linear algebra. Let’s denote by

• F an arbitrary field,

• N the set of natural numbers,

• Z the ring of integers, and

• Q the set of rational numbers.

An m× n matrix over the field F is denoted by A = [ai,j] ∈ Fm×n, i.e.

A =




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

. . . . . . . . . . . . . . . . . . . .

am,1 am,2 · · · am,n


 .
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The element at position (i, j) in the matrix A sometimes is denoted by Ai,j.

Partitioning a matrix into blocks we get a so-called block matrix whose elements

are again matrices. Matrix A is called real, rational, integer, or 0-1 matrix if

all of its elements are real numbers, rational numbers, integers, or from {0, 1},

respectively. A matrix whose elements are purely zero is called zero-matrix which

is denoted by 0. In the case when m = n, A is a square matrix of order n, and

we write shortly A ∈ Fn. A square matrix A is called diagonal if ai,j = 0, for all

i 6= j, and we denote it by A = diag[a1,1, a2,2, . . . , an,n]. A diagonal matrix whose

diagonal elements are purely 1 is called identity matrix which is denoted by I. For

clarity, sometimes we denote the identity matrix of order n by In. The transpose

of matrix A is denoted by AT , i.e., AT = [aj,i] ∈ Fn×m, for A = [ai,j] ∈ Fm×n. A

square matrix that fulfills A = AT is called symmetric.

By a column vector, or shortly a vector, of length m we mean an m×1 matrix.

We denote vectors by bold letters. A row vector, or shortly a line, is the transpose

of a vector. For A = [ai,j] ∈ Fm×n, there is another representation of A, we write

A = [a1 a2 · · · an],

where a1, a2, · · · , an are the columns of A. We denote the vector of length nm

that concatenates all the n columns of A by vec(A), i.e.

vec(A) =




a1

a2

...

an


 .

For A = [ai,j ] ∈ Fm×n, B = [bi,j ] ∈ Fk×l, and s ∈ F, one can define

• the addition of two matrices by A + B = [ai,j + bi,j ], for m = k and n = l,

• the product of a scale with a matrix by sA = [sai,j ],

• the product of two matrices by AB = [
∑n

l=1 ai,lbl,j] ∈ Fm×l, for n = k

• the tensor product of two matrices by A⊗ B = [ai,jB] ∈ Fmk×nl, and

• the Kronecker sum of two square matrices by A⊕ B = Ik ⊗ A + B ⊗ Im,

for m = n and k = n.

These basic operations are associative, and except for the matrix multiplication

and the tensor product they are commutative.
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2.1. LINEAR ALGEBRA

2.1.2 The rank, the determinant, and the characteristic

polynomial

The vectors a1, a2, . . . , an are called linearly dependent if there exist non-trivial

s1, s2, . . . , sn from F such that s1a1 + s2a2 + · · · + snan = 0, otherwise these

vectors are called linearly independent.

Basically, it is known that the number of all linearly independent columns of

matrix A is equal to the number of all the linearly independent rows of A. This

number is called the rank of A and denoted by rank(A).

One of the most important functions for square matrices is the determinant.

Recall that the determinant and the permanent of matrix A ∈ Fn is defined by

det(A) =
∑

δ∈Sn

sign(δ)

n∏

i=1

ai,δ(i), (2.1)

perm(A) =
∑

δ∈Sn

n∏

i=1

ai,δ(i), (2.2)

where Sn is the symmetric permutation group of {1, 2, . . . , n}, and sign(δ) is

the sign of the permutation δ (sign(δ) is +1 or −1, according to whether the

permutation is even or odd, respectively). There is a 1-1 relation mapping each

permutation δ from Sn to a permutation matrix Pδ which is obtained by permuting

the rows of I in conformity with δ. In particular, det(Pδ) = sign(δ).

Let A be a matrix of order n. If det(A) = 0, then A is called singular,

otherwise A is called nonsingular (or regular, or invertible). A very fundamental

connection between the rank and the determinant is stated by

rank(A) = n ⇐⇒ det(A) 6= 0.

If A is nonsingular, then there always exists the inverse of A. The inverse is de-

noted by A−1 that fulfills AA−1 = In. Matrix A−1 can be computed by Cramer’s

rule, i.e. by the following formula

A−1 =
1

det(A)
adj(A) (2.3)

where adj(A) is the (classical) adjoint of A. The matrix adj(A) is defined as the

transpose of the matrix B = [bi,j ] with the elements bi,j = (−1)i+j det(Aj|i), for

all i, j, where Aj|i is the matrix obtained by deleting the j-th row and the i-th

column of A.

The determinant of a square sub-matrix of a matrix A is called minor. For

A ∈ Fn and α, β ⊆ {1, 2, . . . , n}, we denote the sub-matrix of A by Aα|β obtained
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by deleting all rows and columns with indexes from α and β, respectively. For

α = β, the minor det(Aα|β) is called principal.

With respect to minors, the determinant of a matrix can be inductively com-

puted by the Laplace expansion along a row or a column, i.e.,

det(A) =
n∑

i=1

(−1)i+kai,k det(Ai|k) (2.4)

=

n∑

j=1

(−1)j+lal,j det(Al|j), (2.5)

for each 1 ≤ k, l ≤ n. Based on the Laplace expansion one can show that the

determinant of a triangular matrix is equal to the product of all diagonal elements

in the matrix.

There are other ways to compute the determinant of a matrix. For example,

using elementary operations on rows and columns one can transform a matrix

to a diagonal matrix and the determinant of the resulting matrix is the product

of all diagonal elements of the resulting matrix. This method is usually called

Gaussian elimination provided by the following observations. For A ∈ Fn and

c ∈ F, c 6= 0,

1. the sign of det(A) changes by changing two rows,

2. det(A) changes to c det(A) by adding i-th row multiplied by c to j-th row,

3. the last two statements hold by substituting the word “column” into “row”.

Note that the rank of an arbitrary matrix can be determined by using similar

operations on its rows and columns.

The characteristic polynomial of a matrix A ∈ Fn is defined to be the deter-

minant of the polynomial matrix xI−A, where x is an indeterminate. We denote

this polynomial by χA(x), i.e.

χA(x) = det(xI − A).

By using inductively the Laplace expansion for computing χA(x), one can show

that the degree of χA(x) is precisely n and the coefficient corresponding to the

term with highest degree, i.e. to the term xn in χA(x), is equal to 1. Note that

a polynomial whose highest coefficient is equal to 1 is called monic. Let’s ci be

the coefficients of χA(x), i.e.

χA(x) = xn + cn−1x
n−1 + · · ·+ c1x + c0.
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The constant term c0 is important as well as the determinant because

c0 = χA(0) = det(−A) = (−1)n det(A).

The roots λ1, λ2, . . . , λn of χA(x) over the set of complex numbers are called

the eigenvalues of the matrix A, i.e. one can write

χA(x) =

n∏

i=1

(x− λi) , and

det(A) =
n∏

i=1

λi .

The latter equation implies the fact: A is singular if and only if one of its eigen-

values is zero. Let trace(A) be the sum of all diagonal elements of A. A theorem

in linear algebra states that

trace(Ai) =
n∑

j=1

λi
j, for all i. (2.6)

A non-zero polynomial p(x) over F is called an annihilating polynomial for A

if p(A) = 0. Cayley-Hamilton’s Theorem states that χA(x) is an annihilating

polynomial for A, i.e.

χA(A) = An + cn−1A
n−1 + · · ·+ c1A + c0I = 0. (2.7)

2.1.3 The invariant factors and canonical forms

For A ∈ Fn, the minimal polynomial (of A) is defined to be a monic polynomial

with minimal degree that annihilates the matrix A. We denote the minimal

polynomial of A by µA(x). Let m and 1, dm−1, . . . , d0 be the degree and the

arranged coefficients of µA(x), respectively. Then µA(x) is presented by

µA(x) = xm + dm−1x
m−1 + · · ·+ d1x + d0.

In analogy to (2.7) we have

µA(A) = Am + dm−1A
m−1 + · · ·+ d1A + d0I = 0. (2.8)

Let’s denote the degree and the constant term of a polynomial p by deg(p) and

ct(p), respectively. We have deg(µA(x)) = m and ct(µA(x)) = d0.

Let’s define

in−j+1(x) =
Dj(x)

Dj−1(x)
, D0(x) ≡ 1, for j = 1, 2, . . . , n, (2.9)
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where Dj(x) is the greatest common divisor (for short: gcd) of all minors of order j

of the characteristic matrix xI−A. Then the monic polynomials i1, i2, . . . , in are

called the invariant factors of the matrix A. They remain unchanged by every

similarity transformation. The collection of these factors is called the invariant

factor system of A. An observation about this system states that

ij(x) divides ij−1(x), for j = 2, 3, . . . , n + 1,

χA(x) = Dn(x) =
∏n

j=1 ij(x), and

µA(x) = i1(x).

(2.10)

Obviously, if A is an integer matrix, then all coefficients of χA(x), µA(x), and

invariant factors are also integers. Moreover, the set of all distinct roots of χA(x)

is equal to the set of all distinct roots of µA(x). It is obvious to see from (2.10)

that the minimal polynomial is a factor of the characteristic polynomial, and

1 ≤ deg(µA(x)) ≤ n = deg(χA(x)). Thus, if the eigenvalues of matrix A are

pairwise different, then µA(x) = χA(x). There are other matrices fulfilling the

latter property. Let’s consider the following matrix P , constructed from the

polynomial p(x) = xn + pn−1x
n−1 + · · ·+ p1x + p0,

P =




0 0 · · · 0 −p0

1 0 · · · 0 −p1

0 1 · · · 0 −p2

. . . . . . . . . . . . . . . . . . .

0 0 · · · 1 −pn−1




. (2.11)

By using the Laplace expansion (2.4) along the last column of xI − P we can

compute χP (x). Observe that det((xI − P )1|n) = (−1)n−1, thus the gcd of all

minors of order n − 1 of xI − P is exactly 1. Therefore, due to (2.9) and (2.10)

we get

χP (x) = µP (x) = p(x). (2.12)

The matrix P such as in (2.11) is usually called the companion matrix of the

polynomial p(x).

Some canonical forms are defined for square matrices. As follows we describe

three important kinds of them.

The n× n diagonal polynomial matrix

SA(x) = diag[in(x), in−1(x), . . . , i1(x)] (2.13)

is called the Smith canonical form of xI − A (or shortly of A).
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The rational canonical form of a square matrix A is given by

RA(x) = diag[C1, C2, . . . , Cn], (2.14)

where Cj is the companion matrix of the invariant factor ij(x) of A, for j =

1, 2, . . . , n, respectively.

The invariant factors can be decomposed into irreducible divisors over the

given field F approximately as follows

i1(x) = (e1(x))j1,1(e2(x))j1,2 · · · (es(x))j1,s ,

i2(x) = (e1(x))j2,1(e2(x))j2,2 · · · (es(x))j2,s ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in(x) = (e1(x))jn,1(e2(x))jn,2 · · · (es(x))jn,s,

where j1,k ≥ j2,k ≥ · · · ≥ jn,k ≥ 0, for k = 1, . . . , s. The monic irreducible divisors

e1(x), e2(x), . . . , es(x) are distinct and they occur in i1(x), i2(x), . . . , in(x). The

powers (e1(x))j1,1 , . . . , (es(x))jn,s that are different from 1 are called elementary

divisors of A over F. For simplicity, we denote the elementary divisors of A by

ε1(x), ε2(x), . . . , εk(x).

The nl × nl upper triangular matrix of the form

Jl =




λ 1 0

λ 1
. . .

. . .

λ 1

0 λ




is called the Jordan block corresponding to the invariant divisor of the

form εl(x) = (x − λ)nl (where λ is in F). The Jordan canonical form of the

matrix A is defined to be the matrix

JA = diag[J1, J2, . . . , Jk].

Thereby, the diagonal elements of JA are the eigenvalues of A.

2.1.4 Equivalence relations on matrices

We are interested in three types of equivalence relations on matrices. Arbitrary

matrices A and B are said to be equivalent if there are nonsingular matrices P

and Q such that A = PBQ. Matrices A, B ∈ Fn are called similar if there

is a nonsingular matrix P ∈ Fn such that A = PBP−1. Symmetric matrices
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A, B ∈ Fn are called congruent if there is a nonsingular matrix P ∈ Fn such that

A = PBP T .

The first type of these relations, namely matrix equivalence, is simply related

to the rank: A and B are equivalent if and only if rank(A) = rank(B).

For the second relation, a fact in linear algebra states that xI−A is similar to

SA(x), and A is similar toRA and JA, for every square matrix A. Therefore, there

is a condition for similarity: A and B are similar if and only if SA(x) = SB(x), or

equivalently RA = RB, or equivalently JA = JB. Diagonalizability of matrices is

immediately related to similarity of matrices. A matrix A is called diagonalizable

if A is similar to a diagonal matrix. For example, symmetric matrices are diago-

nalizable because the Jordan canonical form of a symmetric matrix is a diagonal

matrix. Matrices A1, . . . , Ak are called simultaneously diagonalizable if there is a

nonsingular matrix P such that PA1P
−1, . . . , PAkP

−1 are diagonal matrices.

Congruence of symmetric matrices is conditional on the inertia. We explain

the term “the inertia” in more detail.

Recall that the eigenvalues of a square matrix A are the roots of the charac-

teristic polynomial χA(x) over the set of complex numbers. For a given matrix,

counting the eigenvalues satisfying a particular property is meaningful and im-

portant to tell more about the matrix. The inertia of an n × n matrix A is

defined to be the triple (i+(A), i−(A), i0(A)), where i+(A), i−(A), and i0(A) are

the number of eigenvalues of A, counting multiplicities, with positive, negative,

and zero real part, respectively. Note that the inertia of a matrix consists of non-

negative integers and the sum of these is exactly n. Furthermore, square matrix

A is called positive stable if i(A) = (n, 0, 0) negative stable if i(A) = (0, n, 0), and

positive semi-stable if i−(A) = 0. In the case when A is a Hermitian matrix, i.e.

A and the conjugation of its transpose are equal: A = AT ∗
, all eigenvalues of A

are real and the word stable will be replaced by definite. Note that in case of

integer matrices we use the word “symmetric” instead of “Hermitian”.

A theorem in linear algebra states that symmetric matrices A and B are

congruent if and only if i(A) = i(B).

2.2 Complexity theory

Let Σ be a finite alphabet. A string is an element of Σ∗, and a subset of Σ∗

is called a language or shortly a set. The complement of a set L is denoted

by L. The complement of a class C of sets is defined by coC = {L | L ∈ C}.

A computational integer problem is defined to be a subset of {0, 1}∗ × {0, 1}∗.
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In this thesis, we consider only integer problems, hence we fix our alphabet to

Σ = {0, 1}.

For x ∈ Σ∗, by |x| we denote the length of x. By abs(a) we denote the absolute

value of a real number a. For a set S, its characteristic function is defined by

cS : Σ∗ → {0, 1} such that for all x ∈ Σ∗:

cS(x) =

{
1, if x ∈ S

0, if x 6∈ S.
(2.15)

We denote the base 2 logarithm function by log. The keyword logspace is abbre-

viated for logarithmic space bounded.

We assume familiarity with the basic computational models such as standard

Turing machine, either deterministic or nondeterministic, or Boolean circuits. In

particular, we refer the reader to the papers [AO96, ABO99] for more detail on

the logspace counting classes considered in this thesis.

2.2.1 Logspace counting classes

First of all, we assume familiarity with the following classes

• NP, the class of sets accepted by nondeterministic polynomial-time Turing

machines,

• P, the class of sets accepted by deterministic polynomial-time Turing ma-

chines,

• NL, the class of sets accepted by nondeterministic logspace Turing ma-

chines,

• L, the class of sets accepted by deterministic logspace Turing machines,

• FL, the class of functions computed by deterministic logspace Turing ma-

chines, and

• SL, the class of sets accepted by deterministic symmetric logspace Turing

machines.

Furthermore, AC0, TC-, and NC-classes, which are for integer problems, attend

to our interest.

• AC0 is the class of problems solvable by a uniform family of Boolean circuits

of polynomial-size and constant-depth with unbounded fan-in AND- and

OR-gates, and NOT-gates.
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• TCi, for each i ≥ 0, is the class of problems solvable by a uniform family

of Boolean circuits of polynomial-size and depth O(logi n) with unbounded

fan-in AND- and OR-gates, NOT-gates, and unbounded fan-in MAJ-gates

(majority gates). Thereby, a majority gate outputs 1 if at least a half of its

inputs is purely 1. TC = ∪i≥0 TCi.

• NCi, for each i ≥ 0, is the class of problems solvable by a uniform family

of Boolean circuits of polynomial-size and depth O(logi n) with bounded

fan-in AND- and OR-gates, NOT-gates. NC = ∪i≥0 NCi.

These classes and their properties can be found in [Pap94] (among other standard

textbooks in the area of complexity theory). A simple relationship between them

is well known as follows:

AC0 ⊂ TC0 ⊆ NC1 ⊆ L ⊆ SL ⊆ NL ⊆ TC1 ⊆ NC2 ⊆ NC ⊆ P ⊆ NP.

As stated below, we describe the logspace counting classes.

For a nondeterministic Turing machine M , we denote the number of accepting

and rejecting computation paths on input x by accM(x) and rejM(x), respectively.

The difference of these two quantities is denoted by gapM(x), i.e., for all x,

gapM(x) = accM(x)− rejM(x).

For counting problems, the class #P is defined by Valiant [Val79b] to be

the class of functions of the form accM(x) where M is an NP machine. In the

logspace setting, #L is defined by Álvarez and Jenner [ÀJ93], in analogy to #P,

to be the class of all functions accM where M is an NL machine.

Definition 2.2.1 ([ÀJ93])

#L = {accM |M is a nondeterministic logspace Turing machine}.

It was noted in [ÀJ93] that FL is contained in #L.

The class GapL is defined by Allender and Ogihara [AO96] to be the closure

of #L under subtraction. Actually, GapL is the set of all functions gapM such

that M is a nondeterministic logspace Turing machine.

Definition 2.2.2 ([AO96])

GapL = {gapM |M is a nondeterministic logspace Turing machine }.

As we shall see, in the logspace setting, GapL is defined analogously to class

GapP in [FFK94]. Note that, in all the above mentioned definitions of #L and

GapL, M is restricted (as in [ÀJ93, AO96]) to such a nondeterministic logspace
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machine that halts on all computation paths on all inputs. For function classes

C1 and C2, define

C1 − C2 = {f − g | f ∈ C1, g ∈ C2}.

Then GapL can be defined ([AO96], Proposition 2) by

GapL = #L−#L = #L− FL = FL−#L.

Based on GapL, the classes C=L and PL are defined.

Definition 2.2.3 ([AO96])

(i) C=L = { S | ∃f ∈ GapL, ∀x : x ∈ S ⇐⇒ f(x) = 0 }.

(ii) PL = { S | ∃f ∈ GapL, ∀x : x ∈ S ⇐⇒ f(x) ≥ 0 }.

Since it is open whether C=L is closed under complement, it makes sense to

consider the Boolean closure of C=L, i.e., the class of sets that can be expressed

as a Boolean combination of sets in C=L. The class C=L ∧ coC=L is defined

in [ABO99] to be the class of intersections of sets in C=L with sets in coC=L.

Definition 2.2.4 ([ABO99])

L ∈ C=L ∧ coC=L ⇐⇒ ∃L1 ∈ C=L, L2 ∈ coC=L : L = L1 ∩ L2.

Note that C=L ⊆ C=L ∧ coC=L ⊆ PL.

2.2.2 Reducibility and logspace counting hierarchies

In complexity theory, reducibility is a useful and central concept for comparing

the difficulty of computational problems within a complexity class. The complex-

ity classes described in the preceding section have been defined in a very formal

way. There is another way to define these classes by using reduction concepts.

For example, we can define NL to be the class of computational problems which

are logspace many-one reducible to the s-t connectivity problem. (The latter is

the problem of deciding whether there is a path in G from s to t, for a given

acyclic directed graph G and two distinguished vertices s and t). In general,

most of the complexity classes can be naturally defined to be the class of things

reducible to some important problems.

Roughly, we say that problem P1 reduces to problem P2 if there is a function

R to transform every input x of P1 to an equivalent input R(x) of P2 such that

for solving P1 on input x we have equivalently to solve P2 on input R(x). The

function R is called a reduction from P1 to P2.
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Depending on the upper bound on the complexity of the used transformation

function there are different kinds of reducibility that have been studied in the lit-

erature of complexity theory. For example, there are Turing reduction, logspace

many-one reduction, quantifier-free projection, AC0 reduction, NC1 reduction,

etc.. Allender and Ogihara [AO96] observed that most of the important complex-

ity classes remain unchanged by defining as the class of all things reducible to a

complete problem regardless of the notion of used reducibility. NL is an example

of them. But the situation seems to be not the same as for classes characterized

by linear-algebraic problems, i.e. they don’t have the same considered property

as of NL. It is necessary to describe in detail some reductions which are used in

forthcoming.

For sets S1 and S2, we say that S1 is logspace many-one reducible to S2, de-

noted by S1 ≤
L

m S2, if there is a function R computable in deterministic logspace

such that for all inputs x, x ∈ S1 ⇐⇒ R(x) ∈ S2.

A logspace disjunctive truth table reduction from set S1 to set S2, denoted by

S1 ≤
L

dtt S2, is defined in [ABO99] to be a function f , computable in logspace, such

that for all x, f(x) produces a list of strings (y1, y2, . . . , yr), with the property

that x ∈ S1 if and only if at least one of the yi is in S2. By substituting “all” into

“at least one” in the definition of logspace dtt reduction we get the definition of

logspace conjunctive truth table reduction from S1 to S2 (notation: S1 ≤
L

ctt S2).

For sets S1 and S2, we say that S1 is AC0-reducible to S2, denoted by S1 ≤
AC

0

S2, if there is a family of logspace uniform circuits over unbounded fan-in AND-

and OR-gates, NOT-gates, and (unbounded fan-in) oracle gates for S2, with

polynomial-size and constant-depth (for short: a uniform AC0 family of circuits)

that computes S1. Note that this kind of reducibility is not the same as ≤AC
0

F
(see

e.g. [ST98] for AC0-reductions over some field F). A family of logspace uniform

circuits means in the sense of [Ruz81, Gre93] that there is a deterministic logspace

Turing machine to compute on input 0n the description of the n-th circuit in the

family.

An NC1-reduction, denoted by ≤NC
1

, is a family of logspace uniform cir-

cuits over fan-in two AND- and OR-gates, NOT-gates, and oracle gates, with

polynomial-size and logarithmic depth ([Bal91], see [ABO99]).

For functions f and g, we say that f is logspace many-one reducible to g,

denoted by f ≤L

m g, if there is a function R computable in deterministic logspace

such that for all inputs x, f(x) = g(R(x)). In an analogous way one can define

AC0-, TC0-, and NC1-many-one reductions from function f to function g: if

there is an AC0, TC0, and NC1 family of logspace uniform circuits α such that

f(x) = g(α(x)) for every input x, respectively.
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Under a particular notion of reducibility, we say that computational problem

P is hard for class C if all problems in C can be reduced to P . Additionally, if the

hard problem P is itself in C, then P is called a complete problem for C. We say

that problem P1 is equivalent to problem P2 under a reduction if P1 is reducible

to P2 and P2 is reducible to P1 (under the particular notion of reducibility).

In this thesis, we will show some hardness and completeness results. Unless

otherwise stated, the used reductions are logspace many-one reductions.

We continue to gather some complexity classes for linear-algebraic problems.

Let C be a complexity class. Based on the AC0-reduction one can define

AC0(C), the so-called AC0-closure of C, to be the class of all sets AC0-reducible

to a set in C. For our purpose, we consider the classes AC0(GapL), AC0(C=L)

and AC0(PL), which are the classes of problems AC0-reducible to a GapL-

complete function, a C=L- and a PL-complete set, respectively.

Firstly, Cook [Coo85] defined and studied the class of problems NC1-reducible

to the determinant function. He denoted this class by DET. As mentioned be-

fore, some important complexity classes are unchanged by using different nota-

tions of reducibility. However, it isn’t known whether DET fulfills this property.

The question whether DET is the same as the class of problems AC0-reducible

to the determinant was first posed by Allender and Ogihara [AO96]. They have

defined the logspace versions of the counting hierarchy by using Ruzzo-Simon-

Tompa reducibility [RST84]. It was shown in [AO96] (see also [ABO99]) that the

C=L-, the PL-, and the #L-hierarchy correspond to AC0-closures, respectively,

in the following sense.

• The C=L-hierarchy is defined to be C=LC=L
·

·

·

C=L

.

It was shown in [ABO99] that this hierarchy collapses to AC0(C=L) =

LC=L = NC1(C=L).

• The PL-hierarchy is defined to be PLPL
·

·

·

PL

.

It was shown in [Ogi98, BF97] that PL-hierarchy coincides with

AC0(PL) = PL = NC1(PL).

• The #L-hierarchy is defined to be #L#L·

·

·

#L

which coincides with

AC0(GapL). Any sort of collapse of this hierarchy isn’t known today.

Moreover, it was noted in [ABO99] that all these hierarchies are contained in TC1,

a subclass of NC2, and that the above mentioned hierarchies are contained in the

class DET. Furthermore, Allender [All97] proved that if DET = AC0(GapL),

then the #L-hierarchy collapses to some of its levels.
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In analogy to the closure AC0(GapL), we can introduce TC0(GapL), i.e. the

TC0-closure of GapL, as the class of problems TC0-reducible to the determinant.

Since AC0 ⊂ TC0 ⊆ NC1, it is obvious to see the containments AC0(GapL) ⊆

TC0(GapL) ⊆ DET ⊆ TC1. But we don’t know whether these classes are the

same.

The following relation between the classes are known

C=L ⊆ C=L ∧ coC=L ⊆ AC0(C=L) ⊆ PL ⊆ AC0(GapL).

Some other complexity classes are defined in terms of GapL. For example,

ModmL is the class of GapL functions f such that f(x) 6= 0 (mod m), for every

natural number m, respectively. The most important class of them is Mod2L, i.e.

⊕L. Over Z2, computing the determinant of a 0-1 matrix as well as computing an

element in a power of a 0-1 matrix are complete for Mod2L [Dam90]. At present,

no relationship between ModmL and C=L is known. A further important open

problem attracting a great attention is whether NL ⊆ ⊕L.

SPL is another small logspace counting class which is defined in [ARZ99] to

be the class of all languages having characteristic function in GapL, i.e. SPL =

{L | cL ∈ GapL}. It is known that SPL is contained in C=L, coC=L, and

ModmL for each m ≥ 2. However, we don’t know any complete problem for

SPL. It was noted in [AO96] that there is no reason to conjecture that NL is

contained in GapL, or SPL. The following relations are known.

NC1 ⊆ GapL ⊆ AC0(GapL) ⊆ TC0(GapL) ⊆ DET ⊆ TC1

NL ⊆ C=L, coC=L, C=L ∧ coC=L, AC0(C=L), PL

SPL ⊆ C=L, coC=L, ModmL for each m ≥ 2.

2.2.3 Characterizations of logspace counting classes

Since each NL computation can be interpreted by an acyclic directed graph, the

following problem

• Path

Input: An acyclic directed graph G, and two nodes s and t

Output: path(G, s, t) (the number of paths s t in G )

is known to be complete for #L. Moreover, due to NL computations note that

w.l.o.g. we can assume that the maximal out-degree of the input graph G is equal

to 2.
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We are interested in the logspace counting classes GapL, C=L, C=L∧coC=L,

AC0(C=L), and PL. These classes are characterized by linear-algebraic prob-

lems. It is necessary to describe in detail some basic properties, including com-

plete problems, of these classes.

W.l.o.g. we can restrict all matrix problems in this thesis to problems for inte-

ger matrices, i.e., unless otherwise stated, all input matrices are restricted to in-

teger matrices. The reason for this restriction was already mentioned in [ABO99]

that integer matrix problems are equivalent to rational matrix problems (un-

der logspace reductions) based on the following observation: for given ratio-

nal matrix A (each element of A is viewed as a division of two given integers),

and for integer a and b, in order to verify det(A) = a
b

one can decide whether

b det(cA)− a det(cI) = 0 where integer c is the product of all the denominators

appearing in elements of A.

The class GapL

Let’s define the problem of computing the determinant of a matrix by

• Determinant

Input: An n× n integer matrix A.

Output: det(A).

The class GapL can be defined in terms of the function Determinant in the

sense of the following theorem.

Theorem 2.2.5 ([Tod91, Dam91, Vin91, Val92], see also [AO96, MV97])

Determinant is complete for GapL under logspace many-one reductions.

As in [AO96] we note that a function f is logspace many-one reducible to

Determinant if there is a function g computable in logspace such that, for

all inputs x, f(x) (which is viewed as a number written in binary) is equal to

det(g(x)).

GapL possesses some standard closure properties by the following theorem.

Theorem 2.2.6 ([AO96], Theorem 9) Let f be any function in GapL. The

following functions are in GapL

(1) f(g(·)), for any function g in FL,

(2)
∑|x|c

i=0 f(x, i),

(3)
∏|x|c

i=0 f(x, i), and
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(4)
(

f(x)
g(x)

)
, for any function g in FL such that g(x) = O(1).

Closure properties according to (2) and (3) of Theorem 2.2.6 state that GapL is

closed under addition and multiplication. An improvement of the closure property

according to (1) is given by Corollary 3.3 of [AAM03] that GapL is closed under

composition.

Corollary 2.2.7 ([AAM03], Corollary 3.3) The determinant of a matrix having

GapL-computable elements can be computed in GapL.

The problem of computing an element of a power matrix is defined by

• PowerElement

Input: An n× n matrix A, and natural numbers 1 ≤ m, i, j ≤ n.

Output: (Am)i,j.

PowerElement is complete for GapL. This result was shown by several peo-

ple, including Berkowitz [Ber84], and Toda [Tod91].

Since a graph can be represented by its adjacency matrix, there are some

problems about graphs that are complete for GapL [Val79a, Tod91, Dam91,

ST98]. For example:

• WPath

Input: An acyclic directed graph G with edges weighted by integers, and

two distinguished nodes s and t.

Output: The sum of weights of all paths from s to t in G.

(Note that the weight of a path is defined to be the product of weights of

all edges belonging to the path.)

• PathDifference

Input: An acyclic directed graph G, and distinguished nodes s, t1, t2.

Output: path(G, s, t1)− path(G, s, t2).

(Recall that path(G, s, t) is the number of paths from s to t in G. Similarly

to Path, we can w.l.o.g. assume that the maximal out-degree of G is

exactly 2.)

The class C=L

As an immediate consequence of Theorem 2.2.5, the problem of deciding whether

an integer matrix is singular, i.e. whether the determinant of given matrix is

zero, is C=L-complete. We denote this decision problem by Singularity.
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Theorem 2.2.8 ([AO96, ST98]) Singularity is complete for C=L under

logspace many-one reductions.

For a fixed function f , we define v-f to be the set of all pairs (x, y) such that

y = f(x). The set v-f is called the verification of the function f . For example,

verifying the determinant is defined by

v-Determinant = { (A, a) | det(A) = a }.

The fact that v-Determinant and v-f , for any GapL-complete function f ,

are C=L-complete follows directly from part (2) of Theorem 2.2.6. Hence,

v-PowerElement and v-WPath are known to be complete for C=L.

Some closure properties of C=L can be immediately transformed from GapL

closure properties appearing in part (1), (2), and (3) of Theorem 2.2.6.

Proposition 2.2.9 ([AO96]) C=L is closed under logspace many-one, logspace

conjunctive truth table, and logspace disjunctive truth table reductions.

Let FNL be the class of all functions computable in nondeterministic logspace.

In analogy to ≤L

m, ≤L

ctt, and ≤L

dtt, the nondeterministic reductions ≤FNL

m , ≤FNL

ctt ,

and≤FNL

dtt were defined respectively in [AO96]. It was shown by Allender and Ogi-

hara [AO96] (Theorem 16, Proposition 17) that Proposition 2.2.9 can be strength-

ened by adding the word “nondeterministic” to each place before “logspace”.

Proposition 2.2.9 states the fact that C=L is closed under intersection and union.

Although many closure properties of C=L are known, it is still unknown

whether C=L is closed under complement. Note that there is a positive answer

to the latter question if and only if there exists a logspace many-one reduction

from Singularity to Singularity.

The class PL

The properties of PL have been completely summarized in [AO96].

Let’s denote by PosDeterminant the set of all square integer matrices with

positive determinants. Then PosDeterminant is a complete set for PL. More

general, the problem of deciding whether f(x) ≥ a, for given a and GapL-

function f , is complete for PL.

PL is known to be closed under complement [Ogi98]. Furthermore, this class

is closed under (deterministic and nondeterministic) logspace many-one, ctt, and

dtt reductions.
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The classes AC0(C=L) and C=L ∧ coC=L

It is known that the classes AC0(C=L) and C=L ∧ coC=L are characterized by

problems concerning matrix rank.

Recall that the rank of a matrix A is the number of all linearly independent

rows of A. The complexity of matrix rank has been studied by Allender, Beals,

and Ogihara [ABO99]. They showed that the problem of computing any bit of

the rank is complete for the C=L hierarchy. The problem of computing matrix

rank can be interpreted by the following decision problem

Rank = {(A, k, b) | the k-th bit of rank(A) is b}.

Since the C=L-hierarchy collapses to AC0(C=L), Rank is a complete problem

for AC0(C=L). Furthermore, it was shown in [ABO99] that the set of all matrices

having odd ranks, denoted by OddRank, the set of all matrices having even

ranks, denoted by EvenRank, and the decision problem whether a system of

linear equations is feasible, i.e. the set

FSLE = {(A, b) | A ∈ Zm×n, b ∈ Zm×1, ∃x ∈ Qn×1 : Ax = b},

are also complete for AC0(C=L) under logspace many-one reductions. For sim-

plicity, one can say that matrix rank characterizes AC0(C=L).

Theorem 2.2.10 ([ABO99]) Rank, OddRank, EvenRank, and FSLE are

complete for AC0(C=L).

We denote the problem of deciding whether the rank of a matrix is equal to

some number k by v-Rank, i.e.

v-Rank = { (A, k) | rank(A) = k }.

The latter set is known to be complete for the second level of the Boolean hier-

archy over C=L.

Theorem 2.2.11 ([ABO99]) v-Rank is complete for C=L ∧ coC=L.

Obviously, the rank of an m×n matrix A can be determined by finding a number

i : 0 ≤ i ≤ min{m, n} such that rank(A) = i. Therefore, sets from AC0(C=L)

are logspace disjunctive truth table reducible to C=L∧coC=L. Conversely, each

set which is logspace disjunctive truth table reduced to C=L∧coC=L is logspace

many-one reducible to FSLE, a complete set for AC0(C=L) [ABO99] (Lemma

2.11). However, note that it is still unknown whether C=L ∧ coC=L is closed

under logspace disjunctive truth table reductions.

Furthermore, the problem of deciding whether the rank of a given matrix is

smaller than some given number k, denoted by Rank≤, is complete for C=L.
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Chapter 3

On the Matrix Structure

This chapter deals with the complexity of linear-algebraic problems concerning

the structure of matrices. Results presented in this chapter are mainly sum-

marized from the results presented in the papers [HT00, HT01, HT03a, HT02b,

HT03b]. The text of this chapter is divided into three sections. So, in turn, we

study the problem of verifying the characteristic polynomial in Section 3.1, some

problems concerning the minimal polynomial and the invariant factor system in

Section 3.2, and testing similarity and diagonalizability of matrices in Section 3.3.

3.1 The characteristic polynomial of a matrix

In this section we investigate the complexity of computing and verifying the

characteristic polynomial of a matrix. Some basic facts about computing the

characteristic polynomial are presented in 3.1.1. The main result that verifying

the characteristic polynomial is complete for C=L is shown in 3.1.2.

3.1.1 Computing the characteristic polynomial

Recall that the characteristic polynomial of an n×n matrix A, denoted by χA(x),

is defined to be det(xI − A) where x is a formal variable. Inductively, by using

the Laplace expansion for computing det(xI−A) (see equations (2.4) and (2.5)),

we see the fact that the degree of χA(x) is equal to n. Let 1, cn−1, . . . , c1, c0 be

the arranged coefficients of χA(x), i.e.

χA(x) = det(xI − A)

= xn + cn−1x
n−1 + · · ·+ c1x + c0.
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The problem of computing the coefficients of the characteristic polynomial

is a fundamental task in linear algebra. These coefficients can be derived to

get some precise information about the mathematical object represented by the

matrix. In the complexity-theoretic viewpoint, and especially with respect to

parallel computations, this problem is also fundamental and interesting.

We define the problem of computing the characteristic polynomial by

• CharPolynomial

Input: An n× n matrix A, and a natural number i ≤ n.

Output: The ith coefficient of the characteristic polynomial χA(x).

Our starting point is the following relation between the last coefficient c0

of χA(x) and the determinant:

c0 = (−1)n det(A). (3.1)

Therefore, det(A) can be read off from c0 and vice versa. Actually, this is the

first idea to design a parallel NC2 algorithm for the determinant in the context

of polynomials.

Furthermore, we concentrate on the question: “how to compute the other

coefficients of χA(x)?”. Using a fact in linear algebra that (apart from the sign)

ci is equal to the sum of all the principal minors of order n − i in A, for i =

1, 2, . . . , n− 1, one can not answer the question in the affirmative because there

are
(

n
i

)
minors of order n− i in A.

A well known method for computing the coefficients of χA(x) is given by

Leverrier (see [Gan77a], page 87):

1. Compute the traces si = trace(Ai), for i = 0, 1, . . . , n.

2. Compute the coefficients cj successively by Newton’s formula

cn−j = −
1

j
(sj + cn−1sk−1 + · · ·+ cn−k−1s1), for j = 1, 2, . . . , n. (3.2)

Using Newton’s formula (3.2) and a parallel algorithm for solving systems

of linear recurrences, Csanky [Csa76] presented the first NC2 parallel algorithm

for the coefficients of the characteristic polynomial, and consequently for the

determinant of a matrix. Unfortunately, Csanky’s algorithm can not be used

over finite fields, and obviously, it isn’t division-free.

Berkowitz [Ber84] found the first NC2 algorithm for the characteristic polyno-

mial and for the determinant. He showed that, for a given matrix A, a sequence
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of matrices can be constructed in logspace such that all the coefficients of χA(x)

correspond to the elements in the iterated product of the constructed matrices.

Berkowitz’s Theorem is given by [ABO99] without a proof as follows.

Theorem 3.1.1 [Ber84] Given an n×n matrix A, one can construct in logspace

a sequence of p× p matrices Bi such that the coefficients cn−1, . . . , c1, c0 of χA(x)

appear respectively at positions (1, n), . . . , (1, 2), (1, 1) in the matrix
∏

i Bi.

Since iterated matrix multiplication is equivalent to matrix powering [vzG93],

the coefficients of the characteristic polynomial of a matrix are computable in

GapL.

Proposition 3.1.2 The coefficients of the characteristic polynomial of a matrix

are computable in GapL. CharPolynomial is complete for GapL.

3.1.2 Verifying the characteristic polynomial

As mentioned in Chapter 1 (see page 6), there are two versions of verifying the

characteristic polynomial: one has to verify only one coefficient of this polyno-

mial, the other has to verify all coefficients of this polynomial. By (3.1), apart

from the sign det(A) is the constant term of the characteristic polynomial χA(x).

Hence, the first verification version, i.e. the verification of one coefficient of the

characteristic polynomial, is C=L-complete. The second verification version of

the characteristic polynomial can be formally defined by

• v-CharPolynomial =

{ (A, c0, c1, . . . , cn−1) | χA(x) = xn + cn−1x
n−1 + · · ·+ c1x + c0 }.

By Proposition 3.1.2, each coefficient of χA(x) is computable in GapL. So,

verifying each coefficient is a C=L predicate. Since C=L is closed under logspace

ctt reductions, v-CharPolynomial is in C=L. Santha and Tan [ST98] asked

whether v-CharPolynomial is complete for C=L. For a positive answer to

this question we have to show that v-CharPolynomial is hard for C=L.

Recall that a GapL-complete function is PowerElement. The function

PowerElement computes the element (Am)i,j, for an n × n matrix A and

for natural numbers m, i, j; note that w.l.o.g. we can restrict PowerElement

to the problem of computing (Am)1,n. Thus the problem v-PowerElement

is complete for C=L. We take v-PowerElement as the reference prob-

lem to show that v-CharPolynomial is hard for C=L. The reduction

from v-PowerElement to v-CharPolynomial is based on techniques of
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Toda [Tod91] and Valiant [Val79a], which show that iterated matrix multipli-

cation is reducible to the determinant. In parts of our presentation we follow the

reduction presented in Proposition 2.2 of [ABO99].

Theorem 3.1.3 v-PowerElement ≤AC0

m v-CharPolynomial.

Proof . Let A be an n×n matrix and 1 ≤ m ≤ n. We will construct a matrix B

such that the value (Am)1,n occurs as one of the coefficients of χB(x).

Interpret A as the representation of a directed bipartite graph G0 on 2n nodes

and e edges. That is, the nodes of G0 are arranged in two columns of n nodes

each. In both columns, nodes are numbered from 1 to n. If element ak,l of A is

not zero, then there is an edge labeled ak,l from node k in the first column to

node l in the second column. The number of non-zero elements in A is exactly e.

Now, take m copies of graph G0, put them in a sequence and identify each

second column of nodes with the first column of the next graph in the sequence.

Call the resulting graph G′. Graph G′ has m + 1 columns of nodes, and each

column has exactly n nodes. Recall that the weight of a path p in a graph

is the product of all labels on the edges belonging to the path p. The crucial

observation now is that the element at position (1, n) in Am is the sum of the

weights of all paths in G′ from node 1 in the first column to node n in the last

column. Call these two nodes s and t, respectively. Add an edge labeled 1 from t

to s, and call the resulting graph G. An example for the above construction of G

for A =
[

2 1 0
0 1 1
0 3 0

]
is shown in figure 3.1.

Let B be the adjacency matrix of G. So B is an N × N matrix, where

N = (m + 1)n is the number of nodes of G. Let the characteristic polynomial

of B have the form

χB(x) = det(xIN − B) = xN +
N−1∑

i=0

cix
i,

where IN is the N × N identity matrix. We give two ways how to compute the

coefficients ci in χB(x)

1. one way is to use elementary linear transformations and bring the polyno-

mial matrix xIN − B into triangular block form. Then the characteristic

polynomial of B can be computed from the resulting polynomial matrix.

2. a very elegant proof is provided by combinatorial matrix theory from which

it is known that the coefficients of the characteristic polynomial can be

expressed as cycle covers in the graph G (see e.g. [BR91, CDS80, Zei85,

MV97, MV99]).
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Figure 3.1: The graph G constructed from matrix A for m = 3. The three copies

of G0 are indicated by the dashed lines. The edge labels are the corresponding

elements of A. The thicker edges indicate the two paths from s to t. The weights

of these two paths sum up to 3, which is the value of (A3)1,3. For the characteristic

polynomial of the adjacency matrix B we get χB(x) = x12 − 3x8.

We start by giving the combinatorial argument which is much shorter than the

linear-algebraic argument.

The combinatorial way

It is known that, for each i, the coefficient ci in χB(x) is equal to the sum of

the disjoint weighted cycles that cover N − i nodes in G, with appropriate sign

(see [BR91] or [CDS80] for more detail). In the graph G, all edges go from a layer

to the next layer. The only exception is the edge (t, s). So any cycle in G must

use precisely this edge (t, s), and then trace out a path from s to t. Therefore,

each cycle in G has exactly the length m + 1, and the weighted sum of all these

cycles is precisely (−1)m+1(Am)1,n (for the sign, recall that we consider xIN −B).

The sign of the cycle (as a permutation) is (−1)m. Hence,

cN−(m+1) = (−1)m+1(−1)m(Am)1,n

= −(Am)1,n,

and all other coefficients must be zero, i.e

χB(x) = xN − axN−(m+1), for a = (Am)1,n.
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The linear-algebraic way

Consider the adjacency matrix B of the graph G. Except for the edge (t, s),

graph G is acyclic. Thus we can put the nodes of G in such an order that

adjacency matrix B is upper triangular for the first N − 1 rows with zeros along

the main diagonal. The last row of B has 1 in the first position (representing

edge (t, s)), and all the other elements are zero.

Now we can write B as a (m + 1)× (m + 1) block matrix by

B =




A
. . .

A

L


 .

Matrix A occurs m-times on the upper sub-diagonal of B. L is the n× n matrix

having 1 at position (n, 1) and 0 elsewhere. All the empty places in B are filled

with zero (matrices).

Therefore, xIN − B has the form

xIN −B =




xIn −A
. . .

. . .

xIn −A

−L xIn


 .

To compute χB(x) we transform xIN −B into an upper triangular block matrix.

Note that it is already upper triangular except for matrix L in the lower left

corner. We want to eliminate this block.

The first step is to multiply the last block row by xIn, and add to it the first

block row multiplied by L (from right). This transforms the last block row into

0, − AL, 0, . . . , 0, x2In.

In the second step, we multiply the last block row again by xIn, and add to

it the second block row multiplied by AL (from right). This transforms the last

block row into

0, 0, −A2L, 0, . . . , 0, x3In.

Continuing that way for m iterations, we bring the last block row into

0, . . . , 0, xm+1In − AmL.

Let D(x) be the resulting upper triangular matrix, i.e.,

D(x) = diag[xIn, . . . , xIn, xm+1In − AmL].
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The determinant of D(x) is the product of the determinants of diagonal blocks,

i.e.

det(D(x)) = xN−n det(xm+1In − AmL). (3.3)

We compute the determinant of xm+1In−AmL. Recall the form of matrix L:

the only non-zero element is a 1 in the lower left corner. Therefore, AmL has the

last column of Am as its first column and 0 elsewhere. Hence, xm+1In − AmL is

an n× n lower triangular matrix with the diagonal

xm+1 − (Am)1,n, xm+1, . . . , xm+1,

that has the determinant

det(xm+1In −AmL) = x(n−1)(m+1) (xm+1 − a), (3.4)

where a = (Am)1,n.

Based on (3.3) and (3.4) we get

det(D(x)) = xN−n x(n−1)(m+1) (xm+1 − a). (3.5)

Note, however, that this is not the same as χB(x) because we changed χB(x)

with each multiplication of the last block row by xIn, and because we did this m

times. Therefore,

χB(x) = det(D(x))/ det(xmIn)

= xN−n x(n−1)(m+1) (xm+1 − a) x−mn

= xN − axN−(m+1).

In summary, both methods explicitly yield the coefficients of χB(x) such that

(Am)1,n = a ⇐⇒ χB(x) = xN − axN−(m+1). (3.6)

Since the graph G has been constructed in AC0, the used reduction is AC0

many-one. �

By Proposition 3.1.2 and Theorem 3.1.3 we obtain the following corollary.

Corollary 3.1.4

v-CharPolynomial is complete for C=L.
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3.2 The invariant factors of a matrix

In this section we investigate the complexity of some problems concerning the in-

variant factors of a matrix. Recall that the invariant factors i1(x), i2(x), . . . , in(x),

of an n× n matrix A are defined by formula 2.9 (see page 19) as follows

in−j+1(x) =
Dj(x)

Dj−1(x)
, D0(x) ≡ 1, for j = 1, 2, . . . , n,

where Dj(x) be the greatest common divisor of all minors of order j of the

characteristic matrix xI − A. Note that the polynomials i1(x), i2(x), . . . , in(x)

are invariant under every similarity transformation, i.e. two square matrices of

order n are similar if and only if they have the same invariant factor system, or

equivalently, if and only if they have the same Smith normal form. Recall that

the diagonal polynomial matrix SA(x) = diag[in(x), · · · , i2(x), i1(x)] is called the

Smith normal form of A.

In computer algebra, the problem of computing the Smith canonical form

of a polynomial matrix is widely of interest. Note that computing the in-

variant factors of a matrix A and computing the Smith normal form of the

polynomial matrix xI − A are in fact the same. Polynomial-time algorithms

to compute the Smith normal form of an integer matrix have been developed

in [Fru77, KB79]. An improvement of these algorithms can be found in [Sto96].

Kaltofen et al. [KS87, KKS90] presented the first RNC2-algorithm for the Smith

normal form of a rational polynomial matrix. An NC2 algorithm for comput-

ing the Smith normal form of a polynomial matrix is given by Villard [Vil97].

Therefore, each invariant factor of an integer matrix can be computed also in

NC2. Since the minimal polynomial of matrix A is the first invariant factor, i.e.

µA(x) = i1(x), the minimal polynomial can be computed in NC2 as well.

Our approach towards the invariant factors concentrates on the minimal poly-

nomial. We show in this section some new bounds on the complexity of the

minimal polynomial and the invariant factor system. Furthermore, we show that

the considered logspace counting classes can be characterized by some interesting

problems concerning the degree and the constant term of the minimal polynomial.

This section is organized as follows: the minimal polynomial and the invariant

factor system are studied in 3.2.1 and 3.2.2, respectively; problems concerning the

degree and the constant term of the minimal polynomial are presented in 3.2.3.
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3.2.1 Computing and verifying the minimal polynomial

For an n× n matrix A, let

µA(x) = xm + dm−1x
m−1 + · · ·+ d1x + d0.

We define respectively two problems of computing and verifying the minimal

polynomial of an integer matrix as follows:

• MinPolynomial

Input: An n× n matrix A, and a natural number 1 ≤ i ≤ n.

Output: The i-th coefficient of µA(x).

• v-MinPolynomial = { (A, p(x)) | µA(x) = p(x) }.

These problems are known to be in NC2 [Vil97]. In this section, we

show that MinPolynomial is in TC0(GapL) and hard for GapL, and

v-MinPolynomial is in C=L ∧ coC=L and hard for C=L.

An algorithm for computing the minimal polynomial

The algorithm for the minimal polynomial below is based on [HJ85], Section 3.3,

Problem 5.

Let A be an n× n integer matrix. Let p(x) = xk + pk−1x
k−1 + · · ·+ p0 where

all pi are integers. Observe that p(x) is the minimal polynomial of A if and only

if

(i) p(A) = Ak + pk−1A
k−1 + · · ·+ p0I = 0, and

(ii) q(A) 6= 0, for every monic polynomial q(x) of degree deg(q(x)) < k

(see the definition of the minimal polynomial on page 19).

Define vectors ai = vec(Ai) for i = 0, 1, 2, . . . , n. Recall that vec(Ai) is the

n2-dimensional vector obtained by putting the columns of Ai below each other

(see page 16). The equation p(A) = 0 above can be equivalently rewritten as

ak + pk−1ak−1 + · · ·+ p0a0 = 0. (3.7)

By (3.7), the vectors ak, . . . , a0 are linearly dependent. Furthermore, for monic

polynomial q of degree l less than k, it follows from the inequation q(A) 6= 0 that

the vectors al, . . . , a0 are linearly independent.

For each i = 1, 2, . . . , n, we define Ci to be the following n2 × i matrix

Ci = [ai−1 · · · a0].
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Let x
(i) be a variable vector of length i over rational numbers. Consider the

following systems of linear equations

Cix
(i) = −ai, for i = 1, 2, . . . , n. (3.8)

Obviously, there exist always indices 1 ≤ i ≤ n such that the corresponding

systems (3.8) are feasible, and the minimum of them is exactly the degree of

the minimal polynomial of A. Let m be the degree of µA(x). Then all the

columns of Cm are linearly independent, i.e. rank(Cm) = m, and the columns

of Cm+1 are linearly dependent, i.e. rank(Cm+1) = m. Thus, the coefficient

vector d = [dm−1, . . . , d0]
T of µA(x) is the unique solution of the system of linear

equations

Cmx
(m) = −am.

Based on the above observations, one could obtain the following algorithm for

the minimal polynomial.

MINPOL(A)

1 ai ← vec(Ai), for i = 0, . . . , n

Ci ← [ai−1 · · ·a0], for i = 1, . . . , n

2 determine m such that rank(Cm) = rank(Cm+1) = m

3 solve the system Cmx
(m) = −am

4 return the solution as the coefficients dm−1, . . . , d0 of µA(x).

Upper bounds

We prove the following theorem.

Theorem 3.2.1 MinPolynomial is in TC0(GapL).

Proof . Let’s analyse Algorithm MINPOL(A).

In step 1, each element of ai, or equivalently, each element of Ci is an element

of a power matrix, thus it is computable in GapL.

Step 2 can be done in C=L ∧ coC=L because rank(Cm) = m and

rank(Cm+1) = m are coC=L- and C=L-predicate, respectively.

In step 3, note that we have to solve a uniquely feasible system of linear

equations with the solution d = [dm−1, . . . , d0]
T . Define the m ×m matrix Bm

and vector bm of length m by

Bm = CT
mCm and bm = −CT

mam. (3.9)
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Since Cm has the full column rank, we get rank(Bm) = m, i.e. the matrix Bm is

nonsingular. We show that d = B−1
m bm is the solution of the system of the linear

equations in step 3.

Obviously, CT
mCmd = −CT

mam, i.e. CT
m(Cmd + am) = 0. Assume for a

moment that Cmd + am 6= 0. Then the equality CT
m(Cmd + am) = 0 can not

be true because rank(CT
m) = m. Therefore, d = B−1

m bm is the unique solution of

linear equation system in step 3.

Expressing

B−1
m =

adj(Bm)

det(Bm)

where adj(Bm) is the adjoint matrix of Bm (see formula (2.3) on page 17), we get

d =
adj(Bm) bm

det(Bm)
. (3.10)

For any i, all elements of Bi, bi, and adj(Bi) are computable in GapL. Thus

det(Bi) and all elements of adj(Bi)bi are computable in GapL because GapL

is closed under composition. Since m is determined in C=L ∧ coC=L, det(Bm)

and all elements of adj(Bm)bm are computable in AC0(GapL). According to

formula (3.10), each element of d is expressed as a division of two integers which

are computable in AC0(GapL). A breakthrough by Hesse [Hes01] shows that

integer division with remainder can be done in TC0, therefore all elements of d

are computable in TC0(GapL). Furthermore, note that d is anyway an integer

vector.

In summary, MinPolynomial is in TC0(GapL). �

Remark 3.2.2 There is another method to compute the minimal polynomial.

Let’s sketch briefly its idea. The minimal polynomial will be computed by the

following formula

µA(x) =
χA(x)

Dn−1(x)
, (3.11)

where Dn−1(x) is the greatest common divisor of all n2 minors of order n−1 in the

polynomial matrix xI−A. To do so, we use Algorithm 15.4 and 15.1 in [IK93] for

computing Dn−1(x), and thereafter, Algorithm 15.2 in [IK93] for computing the

polynomial division presented in (3.11). By this means, the idea is very simple,

but it is more tricky to show that MinPolynomial is in TC0(GapL) than in

the proof of Theorem 3.2.1.

Remark 3.2.3 It is important to make a remark about matrix inversion. For

an invertible integer matrix A, since the inverse A−1 is uniquely equal to
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adj(A)/ det(A), the elements of A−1 seem not to be division-free. Even in the

case when A−1 is an integer matrix, it is not clear how to develop a division-free

algorithm for the inverse A−1. Therefore, it seems to be incorrect in saying that

matrix inversion is in GapL. With respect to MinPolynomial, the situation is

the same. As we have seen, although the coefficients of µA(x) are integers (A is

an integer matrix), we don’t know how to get a division-free algorithm for com-

puting the minimal polynomial. Therefore, the statement in [HT01, HT03a] that

AC0(GapL) is an upper bound for MinPolynomial is only flawless if there is

a division-free procedure for solving the system of linear equations in step 3 of

Algorithm MinPol. Let’s hope it goes well!

We consider the verification version of the minimal polynomial. Recall that

v-MinPolynomial is the problem of deciding whether a given monic integer

polynomial is the minimal polynomial of a given integer matrix A. We show the

following corollary.

Corollary 3.2.4 v-MinPolynomial is in C=L ∧ coC=L.

Proof . To verify the minimal polynomial we can simplify Algorithm MinPol

presented on page 42 as follows:

v-MINPOL(A, dm−1, . . . , d0)

1 ai ← vec(Ai), for i = 0, . . . , m

2 if am−1, . . . , a1, a0 are linearly independent, and

am + dm−1am−1 + · · ·+ d0a0 = 0

3 then accept else reject.

Since in step 1 all the elements of vectors ai are computable in GapL, the

equality in step 2 can be verified in C=L. For checking linear independence in

step 2, let Bm be the symmetric m×m matrix defined by (3.9), i.e.,

Bm = [am−1 · · · a1 a0]
T [am−1 · · · a1 a0].

Then the vectors am−1, . . . , a1, a0 are linearly independent if Bm is nonsingular.

Since each element of Bm is computable in GapL, so is the determinant of Bm (see

Corollary 2.2.7). Therefore, det(Bm) 6= 0 is a coC=L-predicate.

In summary, v-MinPolynomial can be presented as a C=L-predicate in con-

junction with a coC=L-predicate, i.e. v-MinPolynomial is in C=L ∧ coC=L.

�
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Lower bounds

Lower bounds on the complexity of MinPolynomial and v-MinPolynomial

are given by showing the following theorem.

Theorem 3.2.5 PowerElement ≤AC0

m MinPolynomial.

Proof . We reconsider the N × N matrix B in the proof of Theorem 3.1.3 (see

page 36). Recall that the characteristic polynomial of B is as follows:

χB(x) = xN − axN−(m+1), for a = (Am)1,n.

For the reduction PowerElement ≤AC0

m MinPolynomial, we show that the

value (Am)1,n is one of the coefficients of the minimal polynomial of B. In par-

ticular, we show µB(x) = x2m+2 − axm+1.

Let DN−1(x) be the greatest common divisor of all minors of order N − 1 in

(xIN−B). Observe that the sub-matrix obtained by deleting the first row and the

first column of (xIN −B) is a triangular matrix having purely x on its diagonal.

Therefore, its determinant is equal to xN−1. It follows that DN−1(x) = xl for

some l ≥ 0. Putting this in (3.11) we get

µB(x) =
χB(x)

DN−1(x)
= xN−l − axN−(m+1)−l, for some l ≥ 0.

By defining polynomials pk(x) = x(m+1)+k−axk, for 0 ≤ k ≤ N − (m+1), we

shall show µB(x) = pm+1(x). In order to prove this, we show that the following

two statements hold:

(i) pm+1(B) = 0, and

(ii) pk(B) 6= 0 for all k < m + 1.

Our first step is to compute explicitly the powers Bi, for i = 2, . . . , m + 1.

Elementary calculations yield

B2 =




A2

. . .

A2

AL

LA




, B3 =




A3

. . .

A3

A2L

ALA

LA2




, · · · .
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For each i ≤ m, Bi can be generalized by

i i + 1

↓ ↓

Bi =




Ai

. . .

Ai

Ai−1L

Ai−2LA
. . .

LAi−1




← 1

← m + 1− i

← m + 2− i

← m + 1

.

Furthermore, the matrix Bm+1 is a diagonal block matrix having Am+1−iLAi−1

as its i-th diagonal block, for each 1 ≤ i ≤ m + 1. Hence, matrix B2m+2 (=

(Bm+1)
2
) is also a diagonal block matrix where its i-th diagonal block is equal to

the square of the i-th diagonal block of Bm+1:

(Am+1−iLAi−1)2 = Am+1−iLAmLAi−1.

Let’s observe that the factor LAmL occurring in each diagonal block of B2m+2 is

of an easy form, in particular, LAmL = aL. It follows that on the matrix B2m+2

we can pull the factor a in front of the matrix and what remains is again Bm+1,

i.e., B2m+2 = aBm+1. Therefore,

pm+1(B) = B2m+2 − aBm+1 = 0.

It remains to prove (ii) (see page 45): pk(B) = Bm+1+k − aBk 6= 0, for

all k ≤ m. Note that it is sufficient to prove this for k = m, because, for

some k, pk(B) = 0 implies pk+1(B) = 0.

Assume for a moment that pm(B) = B2m+1 − aBm = 0. Observe that the

blocks at position (1, m+1) in B2m+1 and Bm are AmLAm and Am, respectively.

Hence, AmLAm = aAm. The latter equality implies rank(AmLAm) = rank(aAm).

Due to Lemma 3.2.7 below we can assume that A is nonsingular. Therefore,

rank(AmLAm) = rank(L) = 1,

rank(aAm) =

{
n, for a 6= 0

0, otherwise.

Obviously, since rank(AmLAm) 6= rank(aAm), pm(B) 6= 0.

In summary, we get µB(x) = x2m+2−axm+1 where a = (Am)1,n. As mentioned

in the proof of Theorem 3.1.3, the used reduction is AC0 many-one. �
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Corollary 3.2.6 MinPolynomial is hard for GapL.

v-MinPolynomial is hard for C=L.

To complete the proof of Theorem 3.2.5 we show the following lemma.

Lemma 3.2.7 Given an n×n matrix A and m ≥ 1, there is a nonsingular upper

triangular p×p matrix C constructed from A and m such that (Cm)1,p = (Am)1,n.

Proof . Define C to be the (m + 1)× (m + 1) block matrix

C =




I A
. . .

. . .

I A

I


 ,

where I is the n × n identity matrix. Then C is nonsingular and Cm has the

following form

Cm =




I mA mA2 · · · mAm−1 Am

I mA · · · mAm−2 mAm−1

. . .
. . .

...
...

. . . mA mA2

I mA

I




,

and, for p = (m + 1)n, we have (Cm)1,p = (Am)1,n. �

3.2.2 The invariant factor system of a matrix

Let’s define the problem of computing the invariant factor system of an integer

matrix as follows.

• InvSystem

Input: An n× n matrix A, and two natural numbers 1 ≤ k, j ≤ n.

Output: The k-th coefficient of the j-th invariant factor ij(x) of A.

Note that InvSystem is in NC2 [Vil97].

By Corollary 3.2.6, MinPolynomial is hard for GapL, therefore

InvSystem is hard for GapL as well.

Corollary 3.2.8 InvSystem is hard for GapL.
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Furthermore, we define the problem of verifying the invariant factor system

of an integer matrix by

• v-InvSystem =

{ (A, i1(x), . . . , in(x)) | SA(x) = diag[in(x), in−1, . . . , i1(x)] }.

Theorem 3.2.9 v-InvSystem is in AC0(C=L).

Proof . Let i1(x), . . . , in(x) be n given monic polynomials, and let A be an

n × n matrix. For each non-constant polynomial of the given polynomials, we

construct a companion matrix corresponding to it. Let’s denote the diagonal

block matrix of all constructed companion matrices by D. Then the polynomials

i1(x), . . . , in(x) are the invariant factors of A if and only if A is similar to D.

Since testing similarity can be done in AC0(C=L) [ST98], v-InvSystem is in

AC0(C=L) as well. �

By Corollary 3.2.8, InvSystem is hard for GapL. Unfortunately, from this

result one can not directly justify that C=L is a lower bound for v-InvSystem

because the latter problem requires to verify all invariant factors of a given matrix.

However, we show the following theorem.

Theorem 3.2.10 v-PowerElement ≤AC
0

m v-InvSystem.

Proof . We continue with the setting in the proof of Theorem 3.2.5 (see page 45),

in particular, with the matrix B of order N . Our goal is to determine explicitly

the invariant factor system of B. From the proof of Theorem 3.2.5, we have

already received i1(x) = µB(x) = x2m+2 − axm+1, where a = (Am)1,n. It remains

to compute the invariant factors i2(x), . . . , iN(x) of B.

Recall from the proof of Theorem 3.2.5 that DN−1(x) = xN−(2m+2). Accord-

ing to the expression DN−1(x) = i2(x) · · · iN(x), each of the invariant factors

i2(x), . . . , iN (x) is of the form xj , for some j ≥ 0.

Since the non-constant invariant factors of the form xj are already elementary

divisors (see page 21), it is sufficient to determine all elementary divisors of B.

Define gj to be the number of occurrences of the elementary divisor xj , and

let rj denote the rank of Bj . The numbers gj can be determined from the rank

values rj by the following formula (see [Gan77a], Chapter VI, page 155).

gj = rj−1 + rj+1 − 2rj, for j = 1, . . . , t, (3.12)

where r0 = N and t is the smallest index satisfying the condition

rt−1 > rt = rt+1.
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Fortunately, we can compute all the values rj as follows.

By Lemma 3.2.7, we may assume that the input matrix A to

v-PowerElement is nonsingular, i.e. rank(A) = n. Therefore, we have

rank(Aj) = n, for every j ≥ 1.

Consider the general form of Bj (see page 46), for 1 ≤ j ≤ m. The rank

of Bj is equal to the sum of all ranks of the matrices on the lower and upper

sub-diagonals. The following two observations are useful for computing rank(Bj).

(i) Each of the m + 1 − j blocks on the upper sub-diagonal of Bj has the

form Aj .

(ii) Each of the j blocks on the lower sub-diagonal of Bj has the form

Aj−kLAk−1, for 1 ≤ k ≤ j, where rank(Aj−kLAk−1) = rank(L) = 1.

Therefore, we get

rank(Bj) = (m + 1− j)n + j, for 1 ≤ j ≤ m.

Similarly, we compute rank(Bm+1) and rank(Bm+2), and we get

rank(Bm+1) = rank(Bm+2) = m + 1.

According to formula (3.12), it is obvious to see that t = m + 1 because rm >

rm+1 = rm+2. Therefore,

rj =

{
(m + 1− j)n + j, for j = 1, . . . , m,

m + 1, for j = m + 1, m + 2.

Plugging the values rj into formula (3.12), we obtain

gi =





N − n(m + 1), for i = 1,

0, for i = 2, . . . , m,

n− 1, for i = m + 1.

(3.13)

From (3.13) we can deduce the invariant factors, there are

(a) n − 2 factors xm+1 (note that one of the n − 1 elementary divisors xm+1

occurs in i1(x)),

(b) N − n(m + 1) factors x, and

(c) nm + 1 factors 1.
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In summary, (Am)1,n = a if and only if the invariant factors of A are as follows:

ik(x) =





x2m+2 − axm+1, for k = 1

xm+1, for k = 2, . . . , n− 1,

x, for k = n, . . . , N − nm− 1,

1, for k = N − nm, . . . , N.

�

3.2.3 More about the minimal polynomial

The main contribution of this section is in obtaining some new characterizations

for the logspace counting classes AC0(C=L), C=L ∧ coC=L, and C=L, by in-

vestigating the complexity of problems concerning the degree and the constant

term of the minimal polynomial of a matrix.

For square matrices A and B, and for a natural number m, we define the

problem of

• computing the k-th bit of deg(µA(x)) by

DegMinPol = { (A, k, b) | the k-th bit of deg(µA(x)) is b },

• verifying the value deg(µA(x)) by

v-DegMinPol = { (A, m) | deg(µA(x)) = m },

• deciding whether the value deg(µA(x)) is at most m by

DegMinPol≤ = { (A, m) | deg(µA(x)) ≤ m },

• deciding whether two minimal polynomials have the same degree by

EqDegMinPol = { (A, B) | deg(µA(x)) = deg(µB(x)) },

• deciding whether two minimal polynomials are equal by

EqMinPolynomial = { (A, B) | µA(x) = µB(x) },

• computing the value ct(µA(x)) to be the function CTMinPol(A), and

• deciding whether two minimal polynomials have the same constant term by

EqCTMinPol = { (A, B) | ct(µA(x)) = ct(µB(x)) }.

An aim of this section is to show that the degree of the minimal polynomial is

computationally equivalent to the rank of a matrix. Recall that the complexity

of matrix rank has been studied in [ABO99], where it was shown that
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• Rank is complete for AC0(C=L),

• v-Rank is complete for C=L ∧ coC=L, and

• Rank≤ = { (A, r) | rank(A) ≤ r } is complete for C=L.

We will show that these results can be extended respectively for the sets

DegMinPol, v-DegMinPol, and DegMinPol≤.

Furthermore, we show that EqMinPolynomial, EqDegMinPol, and

EqCTMinPol are complete for AC0(C=L). It follows from the latter result

that CTMinPol can not be computable in GapL unless the C=L-hierarchy

collapses to C=L.

Upper bounds

For DegMinPol≤ and v-DegMinPol, we show the following proposition.

Proposition 3.2.11

(1) DegMinPol≤ is in C=L.

(2) v-DegMinPol is in C=L ∧ coC=L.

Proof . Let A be given n× n matrix, and let m be a given natural number. As

stated in Section 3.2.1 (see page 42), we define

Cj = [a0 a1 · · · aj−1], and

Bj = CT
j Cj, for j = 1, . . . , n.

Let deg(µA(x)) = k ≤ n. Observe that the matrices Ck, . . . , Cn and Bk, . . . , Bn

have the same rank which is equal to k, i.e.

rank(Bn) = deg(µA(x)) = k.

Let

χBn
(x) = xn + cn−1x

n−1 + · · ·+ c1x + c0.

Since Bn is a symmetric matrix, we get rank(Bn) = n− l, for the smallest index

l so that cl 6= 0. It follows that

deg(µA(x)) = n− l.

Therefore, we get the following equivalences

deg(µA(x)) ≤ m ⇐⇒ c0 = c1 = · · · = cn−m = 0,

deg(µA(x)) = m ⇐⇒ c0 = c1 = · · · = cn−m = 0 and cn−m+1 6= 0.
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Since all elements of Bn are computable in GapL, the coefficients ci of χBn
(x) are

also computable in GapL because GapL is closed under composition. Moreover,

testing whether ci = 0 simultaneously for multiple values of i can be done in C=L

because C=L is closed under conjunction (see Proposition 2.2.9). It follows that

the sets DegMinPol≤ and v-DegMinPol are in C=L and C=L ∧ coC=L,

respectively. �

For EqDegMinPol, DegMinPol, EqMinPolynomial, and

EqCTMinPol we show the following proposition.

Proposition 3.2.12 EqDegMinPol, DegMinPol, EqMinPolynomial,

and EqCTMinPol are in AC0(C=L).

Proof . Let A and B be matrices of order n and p, respectively.

The polynomials µA(x) and µB(x) have the same degree if and only if there is a

number m ∈ {1, . . . , min{n, p}} such that deg(µA(x)) = m and deg(µB(x)) = m.

By Proposition 3.2.11, verifying the degree of the minimal polynomial can be

done in C=L ∧ coC=L, therefore EqDegMinPol is in AC0(C=L).

Let (A, k, b) be an input to DegMinPol and let n be the order of A. A

straightforward approach to obtain an upper bound for DegMinPol might be

to use the fact that

(A, k, b) ∈ DegMinPol ⇐⇒ (Bn, k, b) ∈ Rank, (3.14)

where Bn is defined as in the proof of Proposition 3.2.11 (see page 51). However,

every element of Bn seems to require a GapL-computation because Bn = CT
n Cn

and the elements of Cn are computable in GapL. Therefore the right-hand side

of (3.14) verifies the k-th bit of the rank of matrix Bn computable in GapL.

Using the fact that Rank is complete for AC0(C=L), we can argue that (3.14)

can be done in AC0(C=L). For simplicity, we explain another way as follows.

We construct an AC0-circuit with oracle gates from C=L for DegMinPol:

for each number m ∈ {1, . . . , n} whose k-th bit is b we construct an AC0(C=L)

circuit to decide whether deg µA(x) = m. The final output is the disjunction of

these circuits. It follows that DegMinPol is in AC0(C=L).

Due to formula (3.10), the coefficient vector dA of µA(x) can be expressed as

follows.

dA =
adj(Bm) bm

det(Bm)
,

where m = deg(µA(x)), and Bm and bm are defined in terms of powers of A (see

page 43). Recall from the proof of Theorem 3.2.1 that, for each i, det(Bi) and

all elements of adj(Bi)bi are GapL-computable.
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Similarly, we can express the coefficient vector dB as in (3.15). It follows that

in AC0(C=L) we can compare dA with dB. Therefore, EqMinPolynomial and

EqCTMinPol are in AC0(C=L). �

Lower bounds

It was shown in [ABO99] that Rank≤ is hard for C=L and that v-Rank is hard

for C=L ∧ coC=L. We show the following theorem.

Theorem 3.2.13

(1) DegMinPol≤ is hard for C=L.

(2) v-DegMinPol is hard for C=L ∧ coC=L.

Proof . (1) For the first part of the theorem we show that v-PowerElement

is reducible to DegMinPol≤.

Let an n × n matrix A and an integer m ≥ 1 be given as input to

v-PowerElement. Recall that, for v-PowerElement, one has to decide

whether (Am)1,n = 0.

As already seen in the proof of Theorem 3.2.5, one can construct matrix B

such that

µB(x) = x2m+2 − axm+1, where a = (Am)1,n.

Define C to be the companion matrix of the polynomial x2m+2, i.e. C is the

following (2m + 2)× (2m + 2) matrix

C =




0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0

. . . . . . . . . . . . . .

0 0 · · · 1 0




.

It is known that χC(x) = µC(x) = x2m+2 (see (2.12) on page 20).

Define the diagonal block matrix

D =

[
B 0

0 C

]
.

It is known that the minimal polynomial of D is the least common multiple (for

short: lcm) of µB(x) and µC(x) (see [HJ85], Section 3.3, exercise 8). Using this
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fact we get

µD(x) = lcm{xm+1(xm+1 − a), x2m+2}

=

{
x2m+2, for a = 0,

x2m+2(xm+1 − a), for a 6= 0.

Therefore,

a = (Am)1,n = 0 ⇐⇒ deg(µD(x)) = 2m + 2.

Note that the used reduction is AC0 many-one.

(2) To show the second part of the theorem, we construct a reduction from

an arbitrary language L in C=L ∧ coC=L to the set v-DegMinPol.

Since v-PowerElement is complete for C=L, in logspace we can compute

matrices A1 and A2 of order n1 and n2, respectively, and integers m, l ≥ 1, such

that for every w:

w ∈ L ⇐⇒ (Am
1 )1,n1

= 0 and (Al
2)1,n2

6= 0. (3.15)

Due to Lemma 3.2.15 below we may assume w.l.o.g. that m > l.

Let a1 = (Am
1 )1,n1

and a2 = (Al
2)1,n2

. As explained in the first part of the

proof, in logspace we can compute matrices B1 and B2 such that

µB1
(x) = x2m+2 − a1x

m+1,

µB2
(x) = x2l+2 − a2x

l+1.

Define the matrix

D =




B1 0 0

0 B2 0

0 0 C


 ,

where C is the companion matrix of x2m+2. Then the minimal polynomial of D

can be computed as follows

µD(x) = lcm{µB1
(x), µB2

(x), µC(x)}

= lcm{xm+1(xm+1 − a1), xl+1(xl+1 − a2), x2m+2}

= x2m+2lcm{xm+1 − a1, xl+1 − a2}.

For m > l, we get

deg(µD(x)) =






2m + l + 3, for a1 = 0, a2 6= 0,

3m + 3, for a1 6= 0, a2 = 0,

2m + 2, for a1 = 0, a2 = 0,

3m + 3 + r, for a1 6= 0, a2 6= 0, where r > 0.

(3.16)
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Based on (3.15) and (3.16), we have for every w:

w ∈ L ⇐⇒ a1 = 0 and a2 6= 0

⇐⇒ deg(µD(x)) = 2m + l + 3.

Therefore, v-DegMinPol is hard for C=L ∧ coC=L. �

By Proposition 3.2.11 and Theorem 3.2.13 we obtain the following corollary.

Corollary 3.2.14

(1) DegMinPol≤ is complete for C=L.

(2) DegMinPol= is complete for C=L ∧ coC=L.

The following lemma completes the proof of Theorem 3.2.13.

Lemma 3.2.15 Given an n × n matrix A and m ≥ 1, there is a matrix Ã of

order p = n(mk + 1) such that (Am)1,n = (Ãkm)1,p, for any k ≥ 1.

Proof . For a number k, define the following (mk + 1)× (mk + 1) block matrix

Ã =




0 A

0 I
. . .

. . .

0 I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .

. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 A

0 I
. . .

. . .

0 I

0




.

Each block of Ã is a matrix of order n. In the first block super-diagonal of Ã the

pattern of an A followed by (k − 1) times I is repeated m times. All the other

blocks are 0.

An elementary calculation shows that Ãmk has Am as its upper right block at

position (1, mk + 1), and all other blocks are 0, i.e.

Ãmk =




0 · · · 0 Am

0 · · · 0 0

. . . . . . . . . . . . . .

0 · · · 0 0


 .
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Therefore, we have (Am)1,n = (Ãkm)1,p. �

Continuously, we prove the following theorem.

Theorem 3.2.16 EqMinPolynomial, EqDegMinPol, DegMinPol, and

EqCTMinPol are hard for AC0(C=L).

Proof . FSLE (see page 32) was shown in [ABO99] to be complete for

AC0(C=L). We show that FSLE is reducible to the considered sets.

Let (A, b) be an input to FSLE. Define the symmetric (m + n) × (m + n)

matrix

B =

[
0 A

AT 0

]

and the vector c = (bT , 0)T of length m + n. We define further the following two

(m + n + 1)× (m + n + 1) matrices

C =

[
B 0

0 0

]
and D =

[
B c

0 0

]
.

Let λ1, . . . , λk be distinct eigenvalues of C. It will be useful later on to observe

that

(I) C is a symmetric matrix. Therefore, C is diagonalizable, its elementary

divisors have the form (x−λi), and µC(x) = (x−λ1) · · · (x−λk) (see [HJ85],

Section 3.3, Theorem 3.3.6 and Corollary 3.3.8).

(II) C and D are singular matrices. They have the same characteristic poly-

nomial: χC(x) = χD(x) = x χB(x), and consequently they have the same

eigenvalues. It follows that deg(µC(x)) ≤ deg(µD(x)), and the elementary

divisors of D have the form (x− λi)
ti , for some ti ≥ 1.

In order to show that FSLE is reducible to EqMinPolynomial,

EqDegMinPol, DegMinPol, and EqCTMinPol, we prove the following

equivalences

(A, b) ∈ FSLE ⇐⇒ (B, c) ∈ FSLE (3.17)

⇐⇒ C is similar to D (3.18)

⇐⇒ D is diagonalizable (3.19)

⇐⇒ µC(x) = µD(x) (3.20)

⇐⇒ deg(µC(x)) = deg(µD(x)) (3.21)

⇐⇒ deg(µD(x)) is odd (3.22)

⇐⇒ ct(µCα
(x)) = ct(µDα

(x)), (3.23)
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where Cα = C + αI and Dα = D + αI for an appropriate positive integer α to

be chosen later.

Note that equivalences (3.18) and (3.19) will be used later for showing Corol-

lary 3.3.3 and Theorem 3.3.4 in Section 3.3.

Equivalence (3.17). The equivalence holds because the system AT
x = 0 is

always feasible.

Equivalence (3.18). Consider the case where the system Bx = c is feasible.

Let x0 be a solution of the system. Define the (m + n + 1)× (m + n + 1) matrix

T by

T =

[
I x0

0 −1

]
.

Obviously, T is nonsingular and the equalities CT = TD = D hold. Thus, C is

similar to D.

Conversely, if the above system is not feasible, then C and D have different

ranks. Hence they can not be similar.

Equivalence (3.19). Based on observation (I) (see page 56), matrix C is sim-

ilar to a diagonal matrix C ′. If C is similar to D, then D is similar to C ′ because

the similarity relation is transitive. Hence D is diagonalizable.

Conversely, if D is diagonalizable, then all elementary divisors of D are linear.

Based on observation (II) (see page 56), C and D have the same eigenvalues. It

follows that C and D must have the same system of elementary divisors. Thus

they are similar.

Equivalence (3.20). If C is similar to D, then clearly µC(x) = µD(x).

Conversely, if µC(x) = µD(x), then µD(x) contains only linear irreducible

factors, because µC(x) has this property due to observation (I). Therefore, D is

diagonalizable (see [HJ85], Section 3.3, Corollary 3.3.10).

Equivalence (3.21). Based on observation (II) (see page 56), we have

deg(µC(x)) ≤ deg(µD(x)). These degrees are equal if and only if every root

of µD(x) has multiplicity 1. The latter holds if and only if D is diagonalizable.
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Equivalence (3.22). Let the distinct non-zero eigenvalues of the matrix AT A

be δ1, δ2, . . . , δl (note that these numbers are positive). Then the distinct eigen-

values of C are

−
√

δl ,−
√

δl−1 , . . . ,−
√

δ1 , 0 ,
√

δ1 , . . . ,
√

δl−1 ,
√

δl (3.24)

(see [HJ91], Chapter 3). The matrix C is singular because its last row is 0.

Therefore, the number of all distinct eigenvalues of C is exactly 2l + 1. Suppose

deg(µC(x)) = k. Then k = 2l + 1, k is always odd.

To prove the claim, we show that deg(µD(x)) ∈ {k, k + 1}. By observa-

tion (II), deg(µD(x)) ≥ k. Hence, it is sufficient to show deg(µD(x)) ≤ k + 1.

For each i ≥ 0, we have

Ci =

[
Bi 0

0 0

]
, (3.25)

Di =

[
Bi Bi−1

c

0 0

]
. (3.26)

Let µC(x) = xk + dk−1x
k−1 + · · ·+ d1x + d0. Using the fact µC(C) = 0 we have

Ck = −(dk−1C
k−1 + · · ·+ d1C + d0I) = −

k−1∑

i=0

diC
i. (3.27)

From (3.27) and (3.25) we get

Bk = −

k−1∑

i=0

diB
i. (3.28)

Putting (3.28) into (3.26) we get

Dk+1 =

[
Bk+1 Bk

c

0 0

]

=


 −

k−1∑
i=0

diB
i+1 −

k−1∑
i=0

diB
i
c

0 0




= −
k−1∑

i=0

diD
i+1. (3.29)

Let’s consider the following polynomial

p(x) = xµC(x) = xk+1 + dk−1x
k + · · ·+ d1x

2 + d0x.

By (3.29) we have p(D) = 0. Therefore,

deg(µD(x)) ≤ deg(p) = k + 1.
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Equivalence (3.23). Observe that, for any α, equivalences (3.17) to (3.22)

still hold by substituting Cα and Dα into C and D, respectively. Therefore, the

following implication is true

µCα
(x) = µDα

(x) =⇒ ct(µCα
(x)) = ct(µDα

(x)).

We have still to select an appropriate value for α such that

ct(µCα
(x)) = ct(µDα

(x)) =⇒ µCα(x) = µDα
(x). (3.30)

Fix any α. Let’s denote the distinct eigenvalues of C by λ1, . . . , λk. Then

the distinct eigenvalues of Cα = C + αI are λ1 + α, . . . , λk + α. Observe that

Cα is symmetric and χCα
(x) = χDα

(x). So, we can write

µCα
(x) =

k∏

i=1

(x− (λi + α)), and

µDα
(x) =

k∏

i=1

(x− (λi + α))ti, where ti ≥ 1.

Suppose λi + α > 1 for all i. Then the implication in (3.30) holds. Therefore,

it is sufficient to choose such an α that λi + α > 1 for all i.

Let ‖C‖ be the maximum column sum matrix norm of the (m+n+1)× (m+

n + 1) matrix C = [ci,j], i.e.

‖C‖ = max
1≤j≤m+n+1

m+n+1∑

i=1

|ci,j|.

Let ρ(C) be the spectral radius of C, i.e.

ρ(C) = max
1≤i≤k

|λi|.

Then it is known that ρ(C) ≤ ‖C‖ (see [HJ85], Section 5.6). Define

α = 2 +

m+n+1∑

i,j=1

c2
i,j.

Obviously, ρ(C) ≤ ‖C‖ < α and λi + α > 1, for i = 1, 2, . . . , k. Note that α can

be computed in logspace. �

By Proposition 3.2.11 and 3.2.12, and by Theorem 3.2.16 we get the following

corollary.

59



CHAPTER 3. ON THE MATRIX STRUCTURE

Corollary 3.2.17 EqMinPolynomial, EqDegMinPol, DegMinPol, and

EqCTMinPol are complete for AC0(C=L).

As we have seen in Section 3.2.3, for given matrix A, there is a matrix Bn

with GapL-computable elements such that deg(µA(x)) = rank(Bn). On the

other hand, we don’t know whether there exists a converse reduction, i.e. given

matrix A, compute matrix B such that rank(A) = deg(µB(x)). Note that Corol-

lary 3.2.17 provides such a reduction only for the bitwise versions of the corre-

sponding functions, namely DegMinPol and Rank.

Recall that the constant term of the characteristic polynomial χA(x) is

(−1)n det(A). This term is computable in GapL. Now assume for a moment that

the constant term of the minimal polynomial is in GapL as well. It follows that

EqCTMinPol is in C=L, because this is asking whether the difference of two

constant terms (a GapL-function) is zero. By Theorem 3.2.16, EqCTMinPol

is complete for AC0(C=L). Therefore, AC0(C=L) = C=L.

Corollary 3.2.18 If CTMinPol is computable in GapL, then C=L is closed

under complement.

We can considerably weaken the assumption in Corollary 3.2.18: it is suffi-

cient to have a certain addition property of the constant term of the minimal

polynomial. Namely, given matrices A and B, suppose there is a matrix C such

that each element of C is computable in GapL, and

ct(µC(x)) = ct(µA(x))− ct(µB(x)).

Then we have

(A, B) ∈ EqCTMinPol ⇐⇒ ct(µC(x)) = 0 ⇐⇒ det(C) = 0.

Therefore, AC0(C=L) would be collapsed to C=L.

Corollary 3.2.19 If the constant term of the minimal polynomial has the above

addition property, then C=L is closed under complement.

3.3 Similarity and diagonalizability of matrices

As a consequence of the results presented in the preceding sections, in this sec-

tion we show that testing similarity and testing diagonalizability of matrices are

complete for AC0(C=L).
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3.3.1 Testing similarity

Let A and B be matrices of order n. Recall that A is similar to B if and only

if there exists a non-singular matrix P such that A = PBP−1. We define the

problem of testing similarity of two matrices by

Similarity = { (A, B) | A is similar to B }.

Testing similarity of matrices is known as a classical and fundamental task in

linear algebra. There are some necessary and sufficient conditions for similarity

of matrices. One of these criteria states that A and B are similar if and only if

they have the same invariant factor system, i.e. if and only if SA(x) = SB(x) (see

Chapter 2, page 22). Thus, testing similarity of matrices A and B can be done

by computing and comparing the Smith normal form SA(x) and SB(x). Since the

invariant factors of matrices can be computed in NC2 [Vil97], testing similarity

is also in NC2. But the NC2 upper bound on the complexity of Similarity has

been improved.

A very simple criterion for similarity of matrices was shown by Byrnes and

Gauger [BG77].

Theorem 3.3.1 [BG77] Matrices A and B of the same order are similar if and

only if

(i) χA(x) = χB(x), and

(ii) rank(A⊗ I − I ⊗A) = rank(A⊗ I − I ⊗ B) = rank(B ⊗ I − I ⊗ B).

By modifying Theorem 3.3.1 of Byrnes and Gauger, Dixon [Dix79] proved

another similarity-criterion based on matrix rank.

Theorem 3.3.2 [Dix79] Matrices A and B of the same order are similar if and

only if rank2(A⊗ I − I ⊗B) = rank(A⊗ I − I ⊗ A) rank(B ⊗ I − I ⊗B).

Using Theorem 3.3.2 of Dixon, Garzon and Zalctein [GZ89] presented the first

parallel algorithm for testing similarity of matrices. Since computing matrix rank

is in NC2 [Mul87], Similarity is in NC2 as well.

Santha and Tan [ST98] reconsidered similarity of matrices. They ob-

served that Similarity is dtt reducible to verifying matrix rank. Therefore,

Similarity is in AC0(C=L) ([ST98], Theorem 4.4). It was open in the work of

Santha and Tan [ST98] whether the problem of testing similarity of matrices is

hard for AC0(C=L). Indeed, equivalence (3.18) in the proof of Theorem 3.2.16

(see page 56) shows a many-one reduction from FSLE to Similarity. We get

the following corollary.
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Corollary 3.3.3 Similarity is complete for AC0(C=L).

Let’s say a few words about testing simultaneous similarity of matrices. By

SimSimilarity we denote the problem of deciding whether there is a nonsingular

matrix P such that Ai = PBiP
−1, for all pairs of matrices (Ai, Bi), where i =

1, 2, . . . , k and k ≥ 2. Although Similarity is complete for AC0(C=L), it is

still open whether SimSimilarity can be solved in P. SimSimilarity belongs

to the so-called “wild” matrix problems in the work of Grigoriev [Gri83]. He

showed that SimSimilarity is in NP and asked whether SimSimilarity is in

P. A recent result by Ogihara and Zalcstein [OZ02] shows that SimSimilarity

is solvable in nonuniform TC1 (i.e. in logspace uniform randomized TC1). This

gives rise to conjecture that SimSimilarity is efficiently solvable in P. Moreover,

note that SimSimilarity is hard for AC0 because asking if A is similar to B is

equivalent to asking if (A, I) is simultaneously similar to (B, I).

3.3.2 Testing diagonalizability

Recall that a square matrix A is called diagonalizable if it is similar to a diagonal

matrix. Hence, diagonalizability is strongly related to similarity of matrices.

Let’s define Diagonalizable to be the set of all diagonalizable matrices. The

following theorem shows that similarity and diagonalizability of matrices are in

fact equivalent.

Theorem 3.3.4 Diagonalizable is complete for AC0(C=L).

Proof . Equivalence 3.19 in the proof of Theorem 3.2.16 shows that FSLE is

reducible to Diagonalizable. Thus, Diagonalizable is hard for AC0(C=L).

We have still to show that Diagonalizable is in AC0(C=L).

It was shown in Section 3.2.3 how to construct a matrix Bn, for a given

n × n matrix A, such that deg(µA(x)) = rank(Bn). Moreover, it is known from

linear algebra that A is diagonalizable if and only if µA(x) contains only linear

irreducible factors. Therefore, A is diagonalizable if and only if deg(µA(x)) is

equal to the number of distinct eigenvalues of A.

Let l be the number of all distinct eigenvalues of A. Let HA = [hi,j] be the

Hankel matrix associated with A. The elements of HA are defined as follows

hi,j = trace(Ai+j−2), for i, j = 1, . . . , n,

where trace(X) is the sum of all elements on the diagonal of the matrix X.

The rank of HA is related to l with the fact l = rank(HA) (see e.g. [Gan77a],

Chapter XV, Theorem 6).
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In summary,

A is diagonalizable ⇐⇒ deg(µA(x)) = l

⇐⇒ rank(Bn) = rank(HA).

Since all elements of Bn and HA are computable in GapL, testing if rank(Bn) =

rank(HA) can be done in AC0(C=L). So, Diagonalizable is in AC0(C=L).

�

Testing diagonalizability of a matrix can be extended to testing simultaneous

diagonalizability of several matrices. Matrices A1, A2, . . . , Ak are called simulta-

neously diagonalizable if there exists a nonsingular matrix P such that all the

matrices PA1P
−1, . . . , PAkP

−1 are diagonal. Let’s define

SimDiagonalizable =

{ (A1, A2, . . . , Ak) | ∃ regular P : PA1P
−1, . . . , PAkP

−1 are diagonal }.

In sharp contrast to SimSimilarity where we don’t know whether

SimSimilarity is in P, SimDiagonalizable is efficiently solvable in

AC0(C=L) as follows.

Consider the case when all matrices Ai are diagonalizable: these matrices are

simultaneously diagonalizable if and only if they are pairwise commutable, i.e.,

AiAj = AjAi for all 1 ≤ i, j ≤ k (see [HJ85], Section 1.3). For every pair i, j,

the equality AiAj = AjAi can be verified in NC1. Therefore, the main part of

SimSimilarity is to decide whether Ai ∈ Diagonalizable for all 1 ≤ i ≤ k.

This can be done in AC0(C=L) by Theorem 3.3.4. We get the following corollary.

Corollary 3.3.5 SimDiagonalizable is complete for AC0(C=L).
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Chapter 4

The Inertia of a Matrix

In this chapter, we investigate the complexity of some problems concerning the

inertia of a matrix. The main contribution of this chapter is in improving the

results presented in [HT02a]. The text of this chapter is divided into two sections.

In Section 4.1, we show how to compute and verify the inertia of a matrix.

Section 4.2 deals with the complexity of testing stability of matrices.

4.1 Computing and verifying matrix inertia

Recall from Chapter 2, Section 2.1, that the inertia of an n×n matrix A, denoted

by i(A), is defined to be the triple (i+(A), i−(A), i0(A)), where i+(A), i−(A), and

i0(A) are the number of eigenvalues of A, counting multiplicities, with positive,

negative, and zero real part, respectively.

Let A be a matrix of order n, and let k, p, n, and z be nonnegative integers.

We define the problem of

• computing one bit of the inertia (regarding to some fixed coding) by

Inertia = { (A, k, b) | the k-th bit of i(A) is b }, and

• verifying the inertia by

v-Inertia = { (A, p, n, z) | i(A) = (p, n, z) }.

Additionally, we define the following two sets

• PosPowerElement = { (A, m) | (Am)1,n > 0 }, and

• NegDeterminant = { A | det(A) < 0 }.

Since the functions PowerElement and Determinant are complete for

GapL, PosPowerElement and NegDeterminant are known to be com-

plete for PL.
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4.1.1 Routh-Hurwitz’s Theorem

At the end of the 19th century, Routh and Hurwitz have found a necessary and

sufficient condition under which all the roots of a given polynomial lie in the

left half plane. Well, actually Routh-Hurwitz’s Theorem provides a method for

determining the number of roots in the right half-plane of a given real polynomial

(see e.g. [Gan77b], Chapter XV). Since the roots of the characteristic polynomial

χA(x) are the eigenvalues of matrix A, the inertia of A can be computed by

applying the Routh-Hurwitz method to χA(x). We describe this in detail.

Let A be an n × n matrix. Let the characteristic polynomial of A be the

polynomial

χA(x) = xn + cn−1x
n−1 + cn−2x

n−2 + · · ·+ c0.

Define cn = 1. The Routh-Hurwitz matrix Ω(A) = [ωi,j] is defined to be the

following n× n matrix

Ω(A) =




cn−1 cn−3 cn−5 cn−7 · · · 0

cn cn−2 cn−4 cn−6 · · · 0

0 cn−1 cn−3 cn−5 · · · 0

0 cn cn−2 cn−4 · · · 0
...

. . .
...

0 0 0 0 · · · c0




.

That is, the diagonal elements of Ω(A) are ωi,i = cn−i. In the i-th column, the

elements above the diagonal are ωi−1,i = cn−i−1, ωi−2,i = cn−i−2, . . . until we

reach either the first row ω1,i or c0. In the latter case, the remaining entries are

filled with zeros. The elements below ωi,i are ωi+1,i = cn−i+1, ωi+2,i = cn−i+2, . . . ,

cn−1, cn, 0, 0, . . . down to the last row ωn,i.

The successively leading principal minors Di of Ω(A) are called the Routh-

Hurwitz determinants, they are

D1 = cn−1, D2 = det(

[
cn−1 cn−3

cn cn−2

]
), . . . , Dn = det(Ω(A)).

For computing the inertia of a matrix, Routh-Hurwitz’s Theorem can be formu-

lated as follows.

Theorem 4.1.1 (Routh-Hurwitz) If Dn 6= 0, then the number of roots of the

polynomial χA(x) in the right half-plane is determined by the formula

i+(A) = V (1, D1,
D2

D1
, . . . ,

Dn

Dn−1
),
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where V (x1, x2, . . . ) computes the number of sign alternations in the sequence of

numbers x1, x2, . . . . For the calculation of the values of V , for every group of p

successive zero Routh-Hurwitz determinants (p is always odd!)

Ds 6= 0, Ds+1 = · · · = Ds+p = 0, Ds+p+1 6= 0

we have to set V ( Ds

Ds−1
, Ds+1

Ds
, . . . , Ds+p+2

Ds+p+1
) = h + 1−(−1)hε

2
, where p = 2h− 1 and

ε = sign( Ds

Ds−1

Ds+p+2

Ds+p+1
). For s = 1, Ds

Ds−1
is to be replaced by D1; and for s = 0, by

c0.

A proof of this theorem can be found in [Gan77b], Chapter XV, Section 6.

Let’s discuss the case when Dn = 0. It is known that Dn = 0 if and only

if χA(x) has at least a pair of opposite roots x0 and −x0 (see [Gan77b], Chap-

ter XV). Define

p1(x) = xn + cn−2x
n−2 + cn−4x

n−4 + · · · , and

p2(x) = cn−1x
n−1 + cn−3x

n−3 + · · · .
(4.1)

Obviously, we have χA(x) = p1(x) + p2(x) and p1(x0) = p2(x0) = 0. Therefore,

x0 is also a root of the polynomial g(x) = gcd(p1(x), p2(x)). Observe that by

decomposing

χA(x) = g(x) χ∗
A(x) (4.2)

the polynomial χ∗
A(x) has no pair of opposite roots, i.e. the Routh-Hurwitz

matrix of χ∗
A(x) is nonsingular. Thus we can use the Routh-Hurwitz theorem

to compute the inertia of the companion matrix of χ∗
A(x). Let B and C be the

companion matrix of g(x) and χ∗
A(x), respectively. Then we get

i(A) = i(B) + i(C).

Since all non-zero eigenvalues of B are pairs of opposite values, the Routh-

Hurwitz method can not be used for computing i(B). No method is known to get

the exact number of roots of an integer polynomial on an axis (to the best of our

knowledge). However, the number of distinct roots of an integer polynomial p(x)

on an axis can be determined as follows. Let P be the companion matrix of a

polynomial p(x), and let deg(p(x)) = n. Recall that the Hankel matrix H = [hi,j]

associated with p(x) is the n×n matrix with the elements hi,j = trace(P i+j−2), for

i, j = 1, . . . , n, where trace(P i+j−2) is the sum of all diagonal elements of P i+j−2.

So H is always symmetric. We denote the signature of H by signature(H), i.e.

signature(H) = i+(H)− i−(H).

The following is a useful theorem relating the signature to the rank of the Hankel

matrix H associated with the polynomial p(x).
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Theorem 4.1.2 ([Gan77b], Theorem 6, page 202)

(1) The number of all distinct real roots of p(x) is equal to signature(H).

(2) The number of all distinct roots of p(x) is equal to rank(H).

We will show below that using this theorem we can compute the inertia i(A) in

at least some cases where Dn = 0.

4.1.2 Upper bounds

We analyze the computation of i(A) by using Theorem 4.1.1.

Using Routh-Hurwitz’s method, we must compute all the coefficients ci of

χA(x), and then all Routh-Hurwitz determinants Di, for i = 1, . . . , n. Since

the coefficients c1, . . . , cn are computable in GapL, each of the determinants

D1, . . . , Dn is computable in GapL as well (note that by Corollary 2.2.7 GapL

is closed under composition). Therefore, in PL one can decide, for i = 1, . . . , n,

whether Di is positive, negative, or zero.

If Dn 6= 0, i.e. if Ω(A) is nonsingular, then i+(A) can be determined by

using Theorem 4.1.1. Since i−(A) = i+(−A), we can apply the same method

to compute i−(A), and then we get i0(A) = n − i+(A) − i−(A). Recall that

Inertia is the problem of computing one bit of i(A) regarding to some fixed

coding. Actually, each bit of i(A) is computable in PL as follows. According to

Theorem 4.1.1, we construct n AC0-circuits with oracle gates from PL so that

i+(A) is equal to the number of 1 in the output-vector of these circuits. To verify

the k-th bit of the number of 1 in a binary vector v, we construct an AC0-circuit

with oracle gates from C=L for verifying the k-th bit of the rank of the diagonal

matrix having diagonal v. In summary, Inertia is solvable by an AC0-circuit

with oracle gates from PL. Recall that AC0(PL) = PL.

Theorem 4.1.3 Each bit of the inertia of a matrix A where Ω(A) is nonsingular

can be computed in PL.

Let’s consider the case when Dn = 0, i.e. when Ω(A) is singular. We de-

compose χA(x) = g(x)χ∗
A(x), as described in the previous section (see equation

(4.2) on page 67). Recall that g(x) = gcd(p1(x), p2(x)) = gcd(χA(x), p1(x)) is

the gcd of two monic polynomials consisting of GapL-computable coefficients.

The problem of computing the gcd of two polynomials can be reduced to the

problem of solving systems of linear equations (see [Koz91], Lecture 34). Based

on this reduction, we can prove that the coefficients of g(x) are computable in

TC0(GapL).
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We describe another way to argue that TC0(GapL) is an upper bound for

computing the gcd of two monic polynomials g1(x) and g2(x). Let G1 and G2 be

the companion matrices of g1(x) and g2(x), respectively. Let G = diag[G1, G2].

Observe that

gcd(g1(x), g2(x)) =
g1(x) g2(x)

lcm(g1(x), g2(x))

=
χG(x)

lcm(µG1
(x), µG2

(x))

=
χG(x)

µG(x)
.

Obviously, the coefficients of χG(x) are computable in GapL. By Theorem 3.2.1,

the minimal polynomial µG(x) is computable in TC0(GapL). In order to com-

pute gcd(g1(x), g2(x)), we use Algorithm 15.2 in [IK93] for the polynomial divi-

sion χG(x)/µG(x). By Algorithm 15.2 in [IK93], the coefficients of the quotient

q and the remainder r of the polynomial division f/h (where h is monic) are

expressed as GapL computations of the coefficients of f and h. Thus, in turn,

gcd(g1(x), g2(x)) is computable in TC0(GapL).

When g(x) has been found, the polynomial χ∗
A(x) = χA(x)

g(x)
can be computed by

using Algorithm 15.2 in [IK93]. This can be done also in TC0(GapL). In sum-

mary, each element of B, the companion matrix of g(x), and C, the companion

matrix of χ∗
A(x)), is computable in TC0(GapL). Furthermore, it is important

to note that these elements (of B and C) can be expressed as divisions (without

remainders) of GapL values.

Since each element of C is expressed as a division (without remainder) of two

GapL values, we can compute i(C) by formula i(C) = sign(d)i(C ′), where d is the

product of all denominators in C and C ′ = dC. Note that i(C ′) can be computed

by using Routh-Hurwitz’s Theorem. Since each bit of i(C ′) is computable in PL,

so is each bit of i(C).

It remains a major problem: How to compute i(B)?. There is no method for

computing i(B) in general. However, in some cases when g(x) is simple, we can

do so anyway.

Suppose for example that

g(x) = xt, for some t ≥ 0,

equivalently, we can say that B (and hence A) has no opposite non-zero eigen-

values . Then we get i(B) = (0, 0, t) and i(A) = (0, 0, t) + i(C). Note that in

coC=L we can decide whether A has no opposite non-zero eigenvalues as follows:
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with the greatest t so that xt is a divisor of χA(x) (it is possible that t = 0) we

decide whether the Routh-Hurwitz matrix associated with the polynomial χA(x)
xt

is nonsingular.

Corollary 4.1.4 Each bit of the inertia of a matrix having no opposite non-zero

eigenvalues can be computed in PL.

We can considerably extend Corollary 4.1.4 to the following theorem.

Theorem 4.1.5 Each bit of the inertia of a matrix A satisfying one of the fol-

lowing properties:

(1) A has all opposite eigenvalues on the imaginary axis, and

(2) A has no opposite eigenvalues on the imaginary axis

is computable in PL.

Proof . Assume that the condition on A is fulfilled. Let B and C be respectively

the companion matrix of g(x) and χ∗
A(x) by decomposing χA(x) = g(x)χ∗

A(x), as

mentioned before. We compute the inertia of A by i(A) = i(B) + i(C).

The triple i(B) can be easily expressed from deg(g(x)) as follows:

• i(B) = (0, 0, deg(g(x)) if all opposite eigenvalues of A lie on the imaginary

axis, and

• i(B) = (1
2
deg(g(x)), 1

2
deg(g(x)), 0), if no opposite eigenvalues of A lie on

the imaginary axis.

Moreover, note that deg(g(x)) and i(C) can be determined in PL. Therefore,

each bit of i(A) is computable in PL.

Theorem 4.1.2 can be used to decide whether A fulfills one of the considered

properties. This can be done in PL as follows.

Since Theorem 4.1.2 deals with the real axis instead of the imaginary axis, we

first turn g(x) by 90◦. It is well known from linear algebra that the eigenvalues

of the matrix P ⊗ Q, for matrices P and Q of order n and m, are λj(P )λk(Q)

where λj(P ) and λk(Q) are the eigenvalues of P and Q, for all 1 ≤ j ≤ n and

1 ≤ k ≤ m, respectively. For our purpose, observe that the eigenvalues of the

matrix E = [ 0 −1
1 0 ] are +i and −i. Define D = A⊗E. Then the eigenvalues of D

are iλk(A) and −iλk(A) where λk(A) runs through all eigenvalues of A. W.l.o.g.

we can assume that A is nonsingular. It follows that the number of distinct
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imaginary eigenvalues of A is equal to the number of distinct real eigenvalues

of D.

Let H be the Hankel matrix of χD(x). By Theorem 4.1.2 we get the following

equivalences

A fulfills (1) ⇐⇒ signature(H) = deg(g(x)), (4.3)

A fulfills (2) ⇐⇒ signature(H) = 0. (4.4)

Since H is symmetric, all eigenvalues of H are real.

Let’s decompose χH(x) = h(x)χ∗
H(x) as described in (4.2). Then signature(H)

is equal to the difference i+(H∗)− i−(H∗), where H∗ is the companion matrix of

χ∗
H(x), because all roots of h(x) are in pairs of opposite values. By Corollary 4.1.4,

i(H∗) can be determined in PL. Therefore, the right-hand sides of (4.3) and (4.4)

can be done in PL as well. �

Based on closure properties of PL, we get the same upper bounds for verifying

as for computing the inertia.

Proposition 4.1.6 Verifying the inertia of a matrix A having one of the follow-

ing properties

1. Ω(A) is nonsingular,

2. A has no opposite non-zero eigenvalues,

3. A has all opposite eigenvalues on the imaginary axis,

4. A has no opposite eigenvalues on the imaginary axis

can be done in PL.

4.1.3 Lower bounds

The following theorem shows a lower bound on the complexity of Inertia and

v-Inertia.

Theorem 4.1.7 Inertia and v-Inertia are hard for PL.

Proof . We construct a many-one reduction from a PL-complete problem, in

particular from PosPowerElement, to Inertia and v-Inertia. Let A be

an n × n matrix, and let m be a positive integer. PosPowerElement is the

problem of deciding whether (Am)1,n > 0.
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Recall the reduction from matrix powering to computing the characteristic

polynomial of a matrix (Theorem 3.1.3): a matrix B has been constructed such

that

(Am)1,n = a ⇐⇒ χB(x) = xN−2m−1
(
x2m+1 − a

)
,

where N = m(n + d) + n, and d is the number of non-zero elements in A. We

show that i(B) or one of its bits can be used to tell the sign of (Am)1,n.

Let’s consider the eigenvalues of B, i.e. the roots of χB(x). Observe that in

the case when a = (Am)1,n 6= 0, then the roots of x2m+1 − a are the corners of a

regular (2m + 1)-gon inscribed in a circle of radius a
1

2m+1 with its center at the

origin. Since 2m + 1 is odd, none of these roots lies on the imaginary axis. This

implies that i0(B) = N − (2m + 1), and one of i+(B) and i−(B) is m and the

other is m + 1. Moreover, these values depend only on the sign of a. Namely, if

a > 0, then

i+(B) =

{
m + 1, if 2m + 1 ≡ 1 (mod 4),

m, if 2m + 1 ≡ 3 (mod 4).
(4.5)

This implies that i+(B) in (4.5) is always odd. Analogously, i+(B) is even if a < 0.

Note that in the case where (Am)1,n = 0, we have i(B) = (0, 0, N).

In summary, in logspace we can compute p, n, z such that

(Am)1,n > 0 ⇐⇒ i(B) = (p,n,z)
⇐⇒ i+(B) = odd.

�

Note also that the matrix B in the proof of Theorem 4.1.7 has no pair of op-

posite non-zero eigenvalues. Therefore, B fulfills the condition of Corollary 4.1.4.

We get the following corollary.

Corollary 4.1.8 The computation and the verification of the inertia of a matrix

with no opposite non-zero eigenvalues are complete for PL.

Congruence of symmetric matrices

Recall that two symmetric matrices A and B are called congruent if there is an

invertible matrix P such that A = PBP T . Sylvester’s Law of Inertia states the

following relation between matrix congruence and matrix inertia: A and B are

congruent if and only if they have the same inertia. Let’s consider

• Congruence = { (A, B) | A, B : symmetric, i(A) = i(B) }.
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We show the following proposition.

Proposition 4.1.9 Congruence is in PL, and is hard for AC0(C=L).

Proof . Since all eigenvalues of a symmetric matrix are real, by Theorem 4.1.5

the inertia of a symmetric matrix can be computed and verified in PL. Thus

Congruence ∈ PL.

Congruence is hard for AC0(C=L) by showing a reduction from FSLE to

Congruence. Let (A, b) be an input to FSLE. The reduction is presented as

follows.

(A, b) ∈ FSLE ⇐⇒ rank(A) = rank([A|b])

⇐⇒ rank(AT A) = rank([A|b]T [A|b])

⇐⇒ rank(

[
AT A 0

0 0

]
) = rank([A|b]T [A|b]

⇐⇒

[
AT A 0

0 0

]
is congruent to [A|b]T [A|b]

⇐⇒ (

[
AT A 0

0 0

]
, [A|b]T [A|b]) ∈ Congruence.

�

4.2 Stability of matrices

By PosStable and PosSemistable we denote the sets of all positive stable

and positive semi-stable matrices, respectively, i.e.

• PosStable = { A | i(A) = (n, 0, 0) }, and

• PosSemistable = { A | i−(A) = 0 },

where A is a matrix of order n. (In case of Hermitian matrices, we call these sets

PosDefinite and PosSemidefinite, respectively.)

We show the following theorem.

Theorem 4.2.1 PosStable and PosSemistable are in PL.

Proof . Let A be a matrix of order n. It is known from linear algebra that A is

a positive stable matrix if and only if all the Routh-Hurwitz determinants of the

73



CHAPTER 4. THE INERTIA OF A MATRIX

matrix Ω(A) are positive. Hence, positive stability of matrices can be decided

in PL, i.e. PosStable ∈ PL.

If Ω(A) is nonsingular, then PosSemistable ∈ PL due to Theorem 4.1.3.

So assume that Ω(A) is singular. As mentioned in the preceding section (see

page 67), decomposing χA(x) = g(x)χ∗
A(x) can be done in TC0(GapL). Let B

and C be the companion matrices of g(x) and χ∗
A(x), respectively. Then matrix A

is positive semi-stable if and only if matrix B is positive semi-stable and matrix

C is positive stable. Furthermore, since all non-zero eigenvalues of matrix B are

pairs of opposite values, B is positive semi-stable if and only if all eigenvalues of

B are on the imaginary axis. It follows from Theorem 4.1.5 that the inertia of B

can be computed within PL.

In summary, PosSemistable is in PL. �

A simple observation leads to lower bounds for PosStable and

PosSemistable is as follows: a matrix A is nonsingular if and only if the sym-

metric matrix AAT is positive definite. Since the product AAT can be computed

in NC1, PosDefinite is hard for coC=L.

Corollary 4.2.2 PosDefinite is hard for coC=L.

As an immediate consequence of Corollary 4.2.2, coC=L is a lower bound

for PosStable and PosSemistable (note that PosDefinite is a subset of

PosStable). Actually, this bound can be improved by the following theorem.

Theorem 4.2.3 PosStable and PosSemistable are hard for PL.

Proof . Recall that the set of all matrices with negative determinant, denoted by

NegDeterminant, is complete for PL. To show that PosStable is hard for

PL we construct a reduction from NegDeterminant to PosStable.

Let A be an n× n integer matrix. Let d1,1, . . . , dn,n be the diagonal elements

of AT A. The Hadamard Inequality (see [Gan77a], Chapter IX) states that

| det(A)| ≤ (d1,1 · · · dn,n)
1/2. (4.6)

Allender [All02] pointed out that w.l.o.g. one can assume that the input

matrix A is over {0, 1}, in which no row of A consists of more than two one’s.

For clarity, this restriction will be shown by Lemma 4.2.4 below. As a conse-

quence, putting di,i ≤ 2 in Hadamard’s Inequality (4.6) we get the following

bound for det(A)

−2n < det(A) < 2n.
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Define

t = ⌈
n

2m + 1
⌉(2m + 1), for an integer m ≥ 1.

Since n ≤ t, we have

det(A) + 2t ≥ det(A) + 2n > 0, and

det(A) < 0 ⇐⇒ det(A) + 2t < 2t.
(4.7)

Lemma 4.2.5 below states that in logspace a matrix B of order k and a positive

integer m can be computed such that

(Bm)1,k = det(A) + 2t, for t = ⌈
n

2m + 1
⌉(2m + 1). (4.8)

Note that m depends on t, and we defined t in terms of m. This makes the

construction a bit tricky.

We further reduce B to a matrix C such that

χC(x) = xN−2m−1(x2m+1 − b),

where N = m(k + d) + k, d is the number of elements different from zero of B,

and b = (Bm)1,k. Recall that this is the AC0-reduction from PowerElement

to CharPolynomial in the proof of Theorem 3.1.3.

As explained in the proof of Theorem 4.1.7, matrix C has N−2m−1 eigenval-

ues, which are equal to zero, and 2m+1 eigenvalues as the roots of the polynomial

x2m+1 − b. The latter 2m + 1 eigenvalues of C are complex and lie on the circle

of radius r = b
1

2m+1 (with the origin as center). Since b > 0, the eigenvalue with

the largest real part is λmax(C) = r.

Finally, we define

D = −C + sI, for s = 2
t

2m+1 = 2⌈
n

2m+1
⌉.

Thereby, to obtain the eigenvalues of D we add s to the eigenvalues of −C, i.e.

the eigenvalues of D can be computed by the following formula

λi(D) = s− λi(C), for all 1 ≤ i ≤ n.

Hence, the eigenvalue of C with the largest real part (which is equal to r) becomes

the eigenvalue of D with the smallest real part (which is denoted by λ1(D)), i.e.

λ1(D) = s− r.

Therefore,

b < 2t ⇐⇒ r < s ⇐⇒ λ1(D) > 0. (4.9)
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From (4.7), (4.8), and (4.9) we get

A ∈ NegDeterminant ⇐⇒ D ∈ PosStable.

An analogous argument reduces the set of matrices having non-positive de-

terminants, PosDeterminant, to PosSemistable. �

We complete the proof of Theorem 4.2.3 by showing the following two lemmas.

Lemma 4.2.4 The problem of computing the determinant of a 0-1 matrix, in

which no row consists of more than two 1’s, is complete for GapL

Proof . It is sufficient to show that the considered problem is GapL-hard.

Recall that PathDifference is the problem of computing path(G, s, t1) −

path(G, s, t2), given an acyclic directed graph G, and nodes s, t1, and ts.

PathDifference is complete for GapL (see page 30). We show a reduction

from PathDifference to the determinant of a 0-1 matrix.

By using Valiant’s technique [Val79a] (see also the proof of Theorem 3.2

in [ST98]), we modify the directed graph G as follows.

(1) Add the edges (t1, t) and (t2, t) where t is a new node.

(2) Replace every edge e = (u, v), except (t2, t) by two new edges (u, ue) and

(ue, v) where ue is a new node corresponding to edge e.

(3) Add a self-loop on each node, except s and t.

We denote the resulting graph by H , and we show that det(B) = path(G, s, t1)−

path(G, s, t2), where B is the adjacency matrix of H .

A combinatorial method for computing the determinant (see e.g. [MV97,

BR91, CDS80]) states that det(B) is the sum of all cycles covering H , with

appropriate sign. Consider the graph H . Any cycle covering H consists of a cy-

cle consisting of a path s t and the edge (t, s), and self-loops on the remaining

nodes. Furthermore, observe that

- there is a 1-1 relation mapping paths s  t1 and s  t2 in G to cycles

consisting of a path s t passing the node t1 and t2, respectively,

- since a self-loop and every cycle consisting of a path s t passing the node

t1 are of odd length, they have the sign 1, and

- since every cycle consisting of a path s  t passing the node t2 is of even

length, its sign is −1.
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Therefore, we get det(B) = path(G, s, t1)− path(G, s, t2).

As mentioned on the problem Path (see page 28), w.l.o.g. we can assume

that the maximal out-degree of G equals 2. Hence, no row of the 0-1 matrix B

consists of more than two one’s. �

Lemma 4.2.5 Given an n×n matrix A, one can construct in logspace a matrix B

of order k and a positive integer m such that

(Bm)1,k = det(A) + 2t, for t = ⌈
n

2m + 1
⌉(2m + 1).

Proof . The construction of the matrix B can be described as follows.

1. Since the function PowerElement is complete for GapL, there is a

logspace many-one reduction from Determinant to PowerElement,

i.e. in logspace one can compute a matrix B0 of order l and an expo-

nent m > 0 such that det(A) = (Bm
0 )1,l, for given matrix A of order n.

2. Define an (m+1)× (m+1) block matrix F whose all m blocks on the first

upper sub-diagonal are purely B0, and whose all other blocks are zero, i.e.

F =




B0 0

B0

. . .

B0

0




.

3. Define

S =

[
s2 s3

0 0

]
, for s = 2⌈

n
2m+1

⌉.

An elementary calculation yields

Sm =

[
s2m s2m+1

0 0

]
and s2m+1 = 2t.

4. Define

T =




1 0

0 0
...

...

0 0

0 1




of the dimension l(m + 1)× 2.
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5. Define

B =

[
F FT + TS

0 S

]
of order k = l(m + 1) + 2.

Now we show (Bm)1,k = det(A) + 2t.

An elementary calculation yields

Bm =

[
F m F mT + 2F m−1TS + · · ·+ 2FTSm−1 + TSm

0 Sm

]
. (4.10)

Observe that, for each 1 ≤ i ≤ m, the power matrix F i is of a very simple

form: on its i-th upper sub-diagonal are purely Bi and all the other blocks are

zero-matrix. Furthermore, we have F m−iTSi = 0, for all i < m. Therefore, we

can deduce the form of Bm in (4.10) into

Bm =

[
F m F mT + TSm

0 Sm

]
.

It follows that

(Bm)1,k = (F mT + TSm)1,2

= (F mT )1,2 + (TSm)1,2

= (Bm
0 )1,l + s2m+1

= det(A) + 2t, for t = ⌈
n

2m + 1
⌉(2m + 1).

�
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Chapter 5

Further Results

This chapter is organized as follows: in Section 5.1, we give an approach towards

the complexity of the unique perfect matching problem for bipartite graphs; in

Section 5.2 and 5.3, we show some necessary and sufficient conditions for collaps-

ing counting logspace hierarchies.

5.1 Unique perfect matching

For a graph G = (V, E) with n nodes and m edges, a subset of edges, M ⊆ E,

with the property that no two edges of M are adjacent by a common node, is

called a matching of G. A matching which is incident to all nodes in V is called

perfect. We denote the number of all perfect matchings of G by #pm(G).

One of the most prominent open questions in complexity theory regarding

parallel computations asks whether there is an NC algorithm to decide whether

a given graph contains a perfect matching. The perfect matching problem is

known to be in P [Edm65], and in randomized NC2 by Mulmuley, Vazirani,

and Vazirani [MVV87]. The randomized NC2 algorithm presented in [MVV87]

has been used in [ABO99] for showing that the perfect matching problem is in

coC=L/poly. The latter result has been improved by Allender, Reinhardt, and

Zhou [ARZ99] to nonuniform SPL.

Since no NC algorithm for detecting perfect matchings in a graph is known,

some special cases of perfect matching problem attract a great attention.

For example, an NC upper bound has been found even for regular bipartite

graphs [LPV81], dense graphs [DHK93], and strongly chordal graphs [DK86]. Al-

though the number of all perfect matchings in a graph is hard for #P [Val79b],

the perfect matching problem for graphs having polynomially bounded number

of perfect matchings is in NC by Grigoriev and Karpinski [GK87].
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The unique perfect matching problem is given by Lovász. He asked whether

there is an NC algorithm for testing if a given graph has a unique perfect match-

ing. Kozen, Vazirani, and Vazirani showed in [KVV85] that the unique perfect

matching problem for bipartite graphs as well as for general graphs is in NC.

This result seems to be corrected only for bipartite graphs [KVV86], and the

unique perfect matching problem for general graphs is still open.

We reconsider the unique perfect matching problem. Taking in considera-

tion that a completeness result on the complexity of the considered problem isn’t

known, an approach towards the complexity of the problem is motivated always.

We show that the unique perfect matching problem for bipartite graphs is sand-

wiched between C=L and NL.

Formally, we denote the problem of deciding whether a graph has exactly one

perfect matching by the set UPM = { G | #pm(G) = 1 }. In this thesis we

consider the case when the given graph is bipartite, and then we give a method

for constructing the unique perfect matching in a general graph.

Let G = (U, V ; E) be a bipartite graph with 2n nodes from U = {1, 2, . . . , n}

and V = {1, 2, . . . , n}, and m edges from E ⊆ U × V . Let’s denote by A the 0-1

bipartite adjacency matrix corresponding to G, i.e. for all 1 ≤ i, j ≤ n, we have

ai,j =

{
1 , if (i, j) ∈ E,

0 , otherwise.

Define matrices B = [bi,j ] by bi,j = ai,j det2(Ai|j), for all 1 ≤ i, j ≤ n, and

C = ABT − I. Let M be a subset of E. To obtain a lower bound on the

complexity of UPM for bipartite graphs we prove the following lemma.

Lemma 5.1.1 The bipartite graph G has a unique perfect matching if and only

if

(1) B is a permutation matrix, and

(2) χC(x) = xn.

Proof . Consider the case when G has exactly one perfect matching M .

• Observe that the determinant of the adjacency matrix corresponding to a

bipartite graph having a unique perfect matching equals either +1 or -1. For

each edge (i, j) from the unique perfect matching M , the bipartite graph

obtained by deleting nodes i ∈ U and j ∈ V from G belongs to UPM.

Therefore, the corresponding adjacency matrix Ai|j satisfies det2(Ai|j) = 1.
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Based on the fact that the perfect matching M is unique in G, each row

as well as each column of the 0-1 matrix B contains only one 1, i.e. B is a

permutation matrix.

• The directed graph corresponding to C = ABT−I doesn’t have any directed

cycles, therefore χC(x) = xn (see Theorem 3.1.3, page 37).

Conversely, if (1) and (2) are satisfied, then we show that G is in UPM by

using the following two observations.

• The permutation matrix B from (1) corresponds to a perfect matching M

in G, and the diagonal elements of ABT are 1 corresponding to the edges

from M .

• Since xn is the characteristic polynomial of the 0-1 matrix C, the directed

graph interpreted by C contains no cycle, i.e. M cannot be alternated. The

perfect matching M is unique.

�

Let G be an arbitrary graph with 2n nodes from U = {1, 2, . . . , 2n} and m

edges from E ⊆ U × U . Let A = [ai,j] be the adjacency matrix of G, i.e. for all

1 ≤ i, j ≤ 2n,

ai,j = aj,i =

{
1 , if (i, j) ∈ E

0 , otherwise.

Let A′ = [a′
i,j ] be the skew-symmetric matrix obtained by negating elements

below the diagonal of A, i.e. for all 1 ≤ i, j ≤ n,

a′
i,j =

{
ai,j , if i ≤ j

−ai,j , otherwise.

The pfaffian of A′, denoted by pf(A′), is defined by det(A′) = pf2(A′) (see

e.g. [MSV99] for more detail). In particular, pf(A′) is the signed sum of all perfect

matchings in G. For example, if G has no perfect matching, then pf(A′) = 0,

and if G has a unique perfect matching, then pf(A′) = +1 or −1 depending on

the sign of the unique perfect matching.

Furthermore, we define B = [bi,j ] where

bi,j = ai,j det(A′
i,j|i,j),

B′ to be the matrix obtained by negating elements below the diagonal of B, and

C = A′B′T − I.

We show the following lemma for arbitrary graphs.
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Lemma 5.1.2 If the graph G has a unique perfect matching, then

(1) B is a symmetric permutation matrix, and

(2) χC(x) = x2n.

Proof . Suppose G has the unique perfect matching M . Observe that each graph

obtained from G by deleting two adjacent nodes i and j has either only one

perfect matching, if (i, j) ∈ M , or no perfect matching, if (i, j) 6∈ M . Therefore,

we have pf(A′
i,j|i,j) ∈ {+1,−1, 0}, i.e. det(A′

i,j|i,j) ∈ {0, 1}. Since M is unique in

G, a node i of G can be only matched by an edge (i, j) ∈M . Therefore, each row

of B contains only one 1. Consequently, B is a symmetric permutation matrix.

Observe that B′T B′ = I and det(B′T ) = 1. Thus we get χC(x) = det(xB′ −

A′ + B′). Since the unique perfect matching M is interpreted by B′, the latter

determinant is equal to x2n. �

Note that a perfect matching M corresponds to the symmetric permutation

matrix B: bi,j = 1 indicates that (i, j) ∈M . Hence, the unique perfect matching

in an arbitrary graph G ∈ UPM can be determined by computing the matrix B.

Using Lemma 5.1.1 we show that C=L is an upper bound for bipartite

UPM. Note thereby that all elements of the matrices mentioned in Lemma 5.1.1

and 5.1.2 are computable in GapL, and that a matrix B = [bi,j] is a permutation

matrix if and only if B is a 0-1 matrix such that
∑n

i=1 bi,j =
∑n

i=1 bk,i = 1, for

each 1 ≤ j, k ≤ 2n. We conclude:

Theorem 5.1.3 UPM for bipartite graphs is in C=L.

Now we show that UPM is hard for NL (note that NL = coNL [Imm88,

Sze88]). Let G be a directed acyclic graph, and let s and t be two designed

nodes. For simplicity, by #path(G, s, t) we denote the number of paths in a

graph G going from s to t. The connectivity problem which is hard for coNL

asks whether #path(G, s, t) = 0. The construction of a new bipartite graph H is

followed by Chandra, Stockmeyer, and Vishkin [CSV84]:

1. Retain nodes s and t in H .

2. Add to H new nodes uin and uout and new edges (uin, uout), for each node

u of G except for s and t.

3. Add to H edges (s, uin), for each node u of G that u is adjacent to s.

4. Add to H edges (uout, t), for each node u of G that u is adjacent to t.
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5. Add the edge (s, t) to H .

Let’s denote by H ′ the graph obtained from H by deleting the edge (s, t). Then

we get

#path(G, s, t) = #pm(H ′) (see [MSV99]), and

#pm(H) = #pm(H ′) + 1.

Note that there is a perfect matching M consisting of the edge (s, t) and all the

edges (uin, uout). Therefore,

#path(G, s, t) = 0 ⇐⇒ #pm(H) = 1.

Mahajan [Mah03] pointed out that the used reduction is based on the reduc-

tion from the directed connectivity problem to the perfect matching problem by

Chandra, Stockmeyer, and Vishkin [CSV84]. Furthermore, there is another way

by Mahajan [Mah03] to argue a proof. We describe it as follows.

(i) Since NL = coNL, there are functions f, g ∈ #L such that

f(x) > 0 =⇒ g(x) = 0, and

f(x) = 0 =⇒ g(x) > 0.

(ii) For a new function h = g + 1 we get the following implications

f(x) > 0 =⇒ h(x) = 1, and

f(x) = 0 =⇒ h(x) > 1.

(iii) We shall construct, as described above, the graph H ′ from G corresponding

to the NL machine computing h. It follows that

f(x) > 0 ⇐⇒ #pm(H ′) = 1.

We conclude:

Theorem 5.1.4 UPM for bipartite graphs is hard for NL.

Let’s say some words about the complexity of UPM for bipartite graphs. Ob-

viously, it will be very interesting and surprising, if the unique perfect matching

problem for bipartite graphs is in (uniform) SPL. Assume for a moment, if the

considered problem is sandwiched between NL and SPL (in the uniform setting),
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then this would imply that NL ⊆ SPL. As already noted in [AO96], there is no

reason in believing that the latter conclusion is true. With this in mind one can

say that there is no reason to expect that the unique perfect matching problem is

in SPL. So as to get the exact complexity of UPM, one can think over whether

UPM is complete for either C=L or NL. Unfortunately, all these two variants

seem to be very difficult!

5.2 Conditions for collapsing the C=L-hierarchy

The complexity of matrix rank has been studied in [ABO99]. The problem of

verifying the rank of a matrix, v-Rank, is known to be complete for C=L ∧

coC=L. It is obvious to see that C=L = coC=L if the rank of a matrix is

computable in GapL. It is natural to ask whether the rank can be computed in

GapL. We show the following theorem.

Theorem 5.2.1 rank ∈ GapL ⇐⇒ C=L = SPL.

Proof . Suppose rank ∈ GapL. Then C=L = coC=L because v-Rank ∈ C=L.

Furthermore, recall that there is a reduction [ABO99] (Corollary 2.3, see also

Chapter 3) from v-PowerElement to v-Rank in the following sense

(Am)1,n = 0 ⇐⇒ rank(B) = N − 1, and

(Am)1,n 6= 0 ⇐⇒ rank(B) = N,

where matrix B of order N can be computed from the input to

v-PowerElement. Define a GapL-function g to be the difference between

the order and the rank of a matrix, i.e. g(B) = N − rank(B). One can use

this function as the characteristic function for deciding whether (A, m, 1, n, 0) ∈

v-PowerElement

g(B) =

{
1, if (Am)1,n = 0

0, otherwise.

Therefore, AC0(C=L) = C=L = SPL. We explain briefly another method for

showing the implication: Taking h = 2 − rank(A′) as the seeking characteristic

function, where A′ is the 2 × 2 diagonal matrix having (Am)1,n and 1 on its

diagonal, we get

h =

{
1, if (Am)1,n = 0,

0, otherwise.
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Suppose C=L = SPL. Then AC0(C=L) = C=L ∧ coC=L = C=L = SPL,

because SPL is closed under complement. As a consequence, the rank of a matrix

can be verified in SPL. Hence, there is a function g ∈ GapL such that for a

given matrix A of order n and for all 1 ≤ i ≤ n we have the following implications

rank(A) = i =⇒ g(A, i) = 1,

rank(A) 6= i =⇒ g(A, i) = 0.

It follows that

rank(A) =
n∑

i=1

i g(A, i).

Since g is computable in GapL, so is the rank. �

As mentioned in [AO96], NL seems unlikely to be a sub-class of GapL or

SPL. Since NL is contained in C=L and PL, the assumption that C=L, or

PL, collapses to SPL doesn’t have much intuitive clout. Thus, Theorem 5.2.1

states another fact that there is no reason to believe that the rank function is

computable in GapL.

The following theorem shows a necessary and sufficient condition for the col-

lapse C=L = coC=L.

Theorem 5.2.2 Let g and h be integer functions such that rank(A) = g(A)
h(A)

, for

any integer matrix A. Then

g, h ∈ GapL ⇐⇒ C=L = coC=L.

Proof . Suppose the functions g and h are computable in GapL. Define f(A, k) =

g(A)−k h(A) for any integer matrix A and for any integer k ≥ 0. Then f ∈ GapL

and we have the following equivalence

rank(A) = k ⇐⇒ f(A, k) = 0.

It follows that the rank of a matrix can be verified in C=L. Therefore, C=L =

coC=L.

Conversely, if C=L = coC=L, then verifying the rank of a matrix is complete

for coC=L. It follows that there are matrices Bi computable in logspace such

that for any matrix A of order n and for i = 1, 2, . . . , n,

rank(A) = i ⇐⇒ det(Bi) 6= 0.

From these equivalences we get

rank(A) =

∑n
i=1 i det(Bi)∑n
i=1 det(Bi)

. (5.1)
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Therefore the following functions are in GapL.

g(A) =
n∑

i=1

i det(Bi), h(A) =
n∑

i=1

det(Bi).

�

Let’s say more about the formula (5.1). If C=L = coC=L, then the rank

can be expressed as a division (without remainder) of two GapL values. Un-

fortunately, we don’t know how to obtain a division-free and GapL-computable

formula for the rank. Under assumption that such a formula exists, we get the

following implication: if C=L = coC=L, then C=L = SPL. Since the latter

seems to be impossible, there is no reason to expect that C=L is closed under

complement.

We generalize the condition for the collapse C=L = coC=L. Recall that the

rank of an n× n symmetric matrix A can be determined from the coefficients of

χA(x) as follows. Let

χA(x) = xn + cn−1x
n−1 + · · ·+ c1x + c0.

For 0 ≤ k ≤ n, rank(A) = k if and only if cn−k 6= 0 and cn−k−1 = cn−k−2 = · · · =

c0 = 0. By defining

w = [wn, wn−1, · · · , w1, w0]
T where wn−j =

n−j∑

i=0

c2
i , for j = 0, 1, . . . , n,

every element of w is computable in GapL. Let’s consider the following property

of w: there is a number k such that wn, wn−1, . . . , wn−k+1 are positive and wn−k =

wn−k−1 = · · · = w0 = 0. Whereby k is exactly the rank of A. Therefore,

the function rank computes the number of all positive elements appeared in w.

Conversely, for a given nonnegative GapL vector, the number of its positive

elements is exactly the rank of the diagonal matrix whose diagonal is the given

vector. We conclude another simple question which is equivalent to the open

question C=L
?
= coC=L: Is it possible to compute in GapL two integers a and b

such that a
b

is the number of all positive elements in a given nonnegative GapL-

vector?

As stated in Section 3.2.3, the degree of the minimal polynomial is compu-

tationally equivalent to matrix rank. We can extend the mentioned conditions

concerning the rank to ones regarding the degree of the minimal polynomial. For

example, the degree of the minimal polynomial is GapL computable if and only

if rank ∈ GapL.
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5.3 Conditions for further collapse of PL

Recall that the signature of a symmetric integer matrix A is defined by

signature(A) = i+(A)− i−(A), where i+(A) and i−(A) are the number of positive

and negative eigenvalues of A, respectively. The function signature is very useful

for testing the congruence of two symmetric matrices A and B, i.e. whether

i(A) = i(B). The set of congruent matrices is denoted by Congruence.

By Corollary 4.1.9 (see page 73), Congruence is in PL and it is hard for

AC0(C=L). The signature and the number i+ of a symmetric integer matrix are

related to the collapse of PL by the following theorem.

Theorem 5.3.1 PL = SPL ⇐⇒ signature ∈ GapL ⇐⇒ i+ ∈ GapL.

Proof . Suppose PL = SPL. Let A be a symmetric matrix of order n. For

j = 1, 2, . . . , n, we define matrices Bj , Cj, Dj, Ej of order n + j as follows

Bj =




A

−1
. . .

−1


 , Dj =




A

1
. . .

1


 ,

Cj = −Bj , Ej = −Dj .

Then we have

signature(A) = j ⇐⇒ (Bj, Cj) ∈ Congruence,

signature(A) = −j ⇐⇒ (Dj, Ej) ∈ Congruence.

By Corollary 4.1.9, Congruence is in PL and it is hard for AC0(C=L). Since

PL = SPL, Congruence is complete for SPL. Hence, there are functions

f, g ∈ GapL such that

(Bj, Cj) ∈ Congruence =⇒ f(Bj , Cj) = 1,

(Bj, Cj) 6∈ Congruence =⇒ f(Bj , Cj) = 0,

and analogously for (Dj, Ej) and the function g.

Therefore, we can write

signature(A) =

n∑

j=1

jf(Bj , Cj)−

n∑

j=1

jg(Dj, Ej).

This shows that signature(A) ∈ GapL.
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From rank(A) = i+(A) + i−(A) and signature(A) = i+(A)− i−(A) we get

i+(A) =
1

2
(rank(A) + signature(A)).

By Theorem 5.2.1 rank ∈ GapL because C=L = SPL. Therefore, i+ is com-

putable in GapL.

Conversely, if i+ is in GapL, then the function signature is anyway in GapL

because signature(A) = i+(A) − i+(−A). (Note that the functions i+ and i−
are equivalent because i+(A) = i−(−A).) Therefore, it remains to show that if

signature ∈ GapL then PL = C=L = SPL.

Observe that the function rank is in GapL because rank(A) = rank(AT A) =

signature(AT A). It follows that AC0(C=L) = SPL. Now the function 2i+(A)

is in GapL because 2i+(A) = rank(A) + signature(A). We further observe that

det(A) > 0 if and only if i+(B) = 1, where B = [det(A)]. Since GapL is closed

under composition, testing i+(B) = 1 can be done in C=L. Hence, PL = C=L =

SPL. �

We show another condition for the collapse PL = SPL. In the following

theorem, by abs(f) we denote the absolute value of f .

Theorem 5.3.2 PL = SPL ⇐⇒ abs(f) ∈ GapL, for every GapL-function

f .

Proof . Suppose PL = SPL. Define abs(f) = (2g − 1)f where f is any GapL

function and g is the characteristic function for deciding whether f is nonnegative,

i.e.

g =

{
0 , if f < 0,

1 , if f ≥ 0.

Since g is in GapL, so is abs(f).

Conversely, suppose abs(f) ∈ GapL for every f ∈ GapL. Then the following

functions g and h are in GapL:

g = abs(f + 1)− abs(f), and

h =

(
g + 1

2

)
.

Therefore, we get

h =

{
0 , if f < 0,

1 , if f ≥ 0
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as the characteristic function for testing if f ≥ 0. It follows that PL = SPL.

�

At the end of this chapter we show the following theorem for collapsing PL =

C=L.

Theorem 5.3.3 Suppose A is a square integer matrix having no opposite non-

zero eigenvalues. PL = C=L if and only if i+(A) can be expressed by r/s where

r and s are computable in GapL.

Proof . Recall from Corollary 4.1.8 that verifying the inertia of a matrix with no

opposite non-zero eigenvalues it is complete for PL.

If PL = C=L, then verifying i+(A) can be done in coC=L, for every n × n

matrix A with no opposite non-zero eigenvalues. It follows that in logspace we

can compute Bk such that

i+(A) = k ⇐⇒ det(Bk) 6= 0, for k = 0, 1, . . . , n.

Thus we get a division of two GapL values for i+(A) as follows

i+(A) =

∑n
i=0 i det(Bi)∑n
i=0 det(Bi)

.

Conversely, if i+(A) can be expressed by r/s where r and s are computable

in GapL, then it is clearly that verifying the inertia of A can be done in C=L.

Therefore, PL = C=L. �
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Conclusions and Open Problems

The following table summarizes some bounds on the complexity of problems in

linear algebra that have been considered in this thesis.

Problem hard for contained in see

CharPolynomial GapL GapL Section 3.1.1

v-CharPolynomial C=L C=L Section 3.1.2

MinPolynomial GapL TC0(GapL)

v-MinPolynomial C=L C=L ∧ coC=L Section 3.2.1

InvSystem GapL NC2 and 3.2.2

v-InvSystem C=L AC0(C=L)

DegMinPol≤ C=L C=L

DegMinPol= C=L ∧ coC=L C=L ∧ coC=L

DegMinPol AC0(C=L) AC0(C=L)

v-DegMinPol AC0(C=L) AC0(C=L) Section 3.2.3

EqDegMinPol AC0(C=L) AC0(C=L)

EqMinPolynomial AC0(C=L) AC0(C=L)

EqCTMinPol AC0(C=L) AC0(C=L)

Similarity AC0(C=L) AC0(C=L)

Diagonalizable AC0(C=L) AC0(C=L) Section 3.3

SimDiagonalizable AC0(C=L) AC0(C=L)

Inertia PL PL, or NC2 Section 4.1

v-Inertia PL PL, or NC2

PosStable PL PL

PosSemistable PL PL Section 4.2

Congruence AC0(C=L) PL

UPM NL C=L Section 5.1
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Some necessary and sufficient conditions for collapsing the C=L-Hierarchy

and the class PL have been presented in Section 5.2 and 5.3.

(1) C=L = SPL ⇐⇒ rank ∈ GapL.

(2) C=L = coC=L ⇐⇒ g, h ∈ GapL, where g and h are integer functions

such that rank(A) = g(A)/h(A).

(3) PL = SPL ⇐⇒ signature ∈ GapL ⇐⇒ i+ ∈ GapL.

(signature and i+ are functions for symmetric integer matrices).

(4) PL = C=L ⇐⇒ g, h ∈ GapL, where g and h are integer functions such

that i+(A) = g(A)/h(A), for every matrix A having no opposite non-zero

eigenvalues.

The conditions in (1) and (2) can be extended to the corresponding conditions

concerning the degree of the minimal polynomial of a matrix, simply by substi-

tuting the function deg(µ) into the function rank. Two other weaker conditions

for the collapse C=L = coC=L are given by Corollary 3.2.18, and 3.2.19. Obvi-

ously, these conditions offer a new insight into the open question C=L
?
= coC=L.

However, we don’t know how to prove or disprove one of the following conjectures:

(a) C=L = coC=L ⇐⇒ rank ∈ GapL. (In particular, if it is true, then there

are some interesting consequences. For instance, if C=L = coC=L then all

classes between C=L and PL are equal to SPL.)

(b) If C=L = coC=L then C=L ⊆ ⊕L.

(c) C=L = coC=L ⇐⇒ PL = C=L.

(d) If PL = C=L then PL ⊆ ⊕L.

(e) PL = C=L ⇐⇒ PL = SPL.

An important task for further research is to close the gap between the lower

and the upper bound where it doesn’t match in the above table.
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Deutsche Zusammenfassung

Diese Dissertation befasst sich mit der Komplexität von einigen fundamen-

talen Problemen aus der linearen Algebra. Die untersuchten Probleme, die das

charakteristische Polynom, das Minimalpolynom, das System der Invarianten-

teiler und die Inertia einer Matrix betreffen, werden nach entsprechenden Kom-

plexitätsklassen geordnet.

Bevor wir einen Überblick über Resultate der vorliegenden Arbeit geben,

erwähnen wir kurz die Namen der Klassen, die durch linear algebraische Probleme

charakterisiert sind. Álvarez and Jenner [ÀJ93] definierten #L als die Klasse

von allen Funktionen, die die Anzahl der akzeptierenden Berechnungen einer

nichtdeterministischen logarithmisch platzbeschränkten Turingmaschine (kurz:

NL Turingmaschine) berechnen. Dann definiert man GapL als die Klasse von

allen Funktionen, die als Differenzen von #L-Funktionen darstellbar sind. An-

hand von GapL kann man weitere Klassen definieren. C=L (Exact Counting in

Logspace) ist die Klasse, in der alle Verifikationen von GapL-Funktionen sind,

und in PL (Probabilistic Logspace) sind alle Vorzeichenberechnungen von GapL-

Funktionen. Die Berechnung der Determinante ist zum Beispiel vollständig für

GapL [Tod91, Dam91, Vin91, Val92], folglich ist die Verifikation der Determi-

nante vollständig für C=L, und das Entscheidungsproblem, ob die Determinante

einer Matrix positiv ist, ist vollständig für PL. Ausserdem interessieren wir uns

für den AC0-Abschluss von C=L, AC0(C=L), welcher durch die bitweise Rang-

berechnung charakterisiert ist, und den TC0-Abschluss von GapL, TC0(GapL),

der die Division von GapL-Werten enthält.

Für das charakteristische Polynom beweisen wir, dass die Verifikation aller

ihrer Koeffizienten vollständig für C=L ist.

Die Berechnung sowie die Verifikation des Minimalpolynoms werden in dieser

Arbeit studiert. Wir zeigen, dass sich das Minimalpolynom in TC0(GapL)

berechnen lässt und es hart für GapL ist, und dass die Verifikation des Min-

imalpolynoms in der zweiten Stufe der Booleschen Hierarchie über C=L liegt

und sie hart für C=L ist. Unsere Untersuchung wird auf die Invariantenteiler
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erweitert. Wir zeigen, dass die Verifikation der Invariantenteiler in AC0(C=L)

liegt und sie hart für C=L ist. Einige interessante Probleme hinsichtlich des

Grads sowie der Konstante des Minimalpolynoms werden definiert und genau

analysiert. Dazu zeigen wir, dass die betrachteten Klassen durch diese Probleme

charakterisiert werden können. Insbesondere wird bewiesen, dass die bitweise

Berechnung des Grads des Minimalpolynoms vollständig für AC0(C=L) ist, d.h.

dass die Berechnung des Rangs und die Berechnung des Grads des Minimalpoly-

noms äquivalent sind.

Als eine Konsequenz der Resultate über das Minimalpolynom können wir die

Komplexität zweier klassischer Probleme bestimmen. Nämlich sind das Entschei-

dungsproblem, ob zwei gegebene Matrizen ähnlich sind, und das Entschei-

dungsproblem, ob eine gegebene Matrix diagonalisierbar ist, vollständig für

AC0(C=L).

Die Inertia einer n × n Matrix A ist definiert als das Tripel i(A) =

(i+(A), i−(A), i0(A)), wobei i+(A), i−(A), und i0(A) die jeweilige Anzahl der

Eigenwerte von A mit positivem, negativem, und 0-Realteil sind. Für bes-

timmte Matrizen zeigen wir, dass die Berechnung sowie die Verifikation der Inertia

vollständig für PL sind. Wir zeigen weiter, dass das Entscheidungsproblem, ob

eine gegebene Matrix positiv stabil ist, auch vollständig für PL ist, und dass das

Entscheidungsproblem, ob symmetrische Matrizen kongruent sind, in PL liegt

und es hart für AC0(C=L) ist.

Ein sehr wichtiges Ziel dieser Dissertation ist die Untersuchung der Beziehun-

gen zwischen Komplexitätsklassen, in denen Probleme aus der linearen Al-

gebra liegen. Wir versuchen einerseits die betrachteten Komplexitätsklassen

sowie ihre Eigenschaften gründlich zu erläutern, andererseits beweisen wir einige

notwendige und hinreichende Bedingungen für die Beziehungen wie C=L =

coC=L, C=L = SPL, PL = C=L oder PL = SPL, wobei coC=L das Komple-

ment von C=L ist und SPL (Stoic Probabilistic Logspace) die Klasse bestehend

aus Sprachen mit charakteristischen Funktionen in GapL ist. Unter dem kom-

plexitätstheoretischen Aspekt sind diese Resultate möglicherweise interessant für

eine potenzielle Problemlösung der offenenen Frage, ob C=L unter Komplement

abgeschlossen ist.
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