A Combinatorial Characterization
of Treelike Resolution Space

Juan Luis Esteban Jacobo Toran
Dept. L.S.I. Theoretische Informatik
U. Politecnica de Catalunya Universitat Ulm
¢/ Jordi Girona Salgado 1-3 Oberer Eselsberg
E08034 Barcelona, Spain D-89069 Ulm, Germany
esteban@lsi.upc.es toran@informatik.uni-ulm.de

October 16, 2003

Abstract

We show that the Player-Adversary game from [?] played over CNF propo-
sitional formulas gives an exact characterization of the space needed in treelike
resolution refutations. This characterization is purely combinatorial and inde-
pendent of the notion of resolution. We use this characterization to give for
the first time a separation between the space needed in tree-like and general
resolution.

1 Introduction

Robinson introduced in [?] the concept of resolution, a refutation proof system for
propositional formulas in conjunctive normal form (CNF). The only inference rule
in this proof system is the resolution rule:

CVx DvVvz
CcvD

Cutting variable z from clauses C'V z and D V z we get the resolvent clause C'V D.
A resolution refutation of a CNF formula ¢ is a sequence of clauses C,...,Cs where
each Cj is either a clause from ¢ or is inferred from earlier clauses by the resolution
rule, and C; is the empty clause. We will denote the empty clause by A. A resolution
refutation can be seen as directed acyclic graph, a dag, in which the clauses are the
vertices, and if two clauses are resolved then there is a directed edge going from
each one of the two clauses to the resolvent. If the underlying graph in a refutation
happens to be a tree, we talk about ¢reelike resolution. It is known that for certain
formulas general resolution can produce shorter refutations than treelike resolution
[?7, ?7]. The reason for this is that, contrary to general resolution, in treelike resolution

if a clause is needed more than once it must be re-derived from the initial clauses
each time.

Due to its simplicity and to its relevance in automatic theorem proving and
logic programming systems, resolution is one of the best studied refutation systems
and several ways to measure the complexity of a resolution refutation have been
proposed. The best studied complexity measure is the size. The size of a refuta-
tion is the number of clauses it contains. It is well known that certain families of
propositional formulas need resolution refutations with a number of clauses that is
exponential in the formula size [?, 7, 7, ?].

Because of the importance of resolution, other measures for the complexity of
such refutations have been introduced. Ben-Sasson and Wigderson [?], building
on previous work [?, ?] defined the concept of width. The width of a resolution
refutation is the maximal number of literals in any clause of the refutation. The
resolution width of a formula is the minimal width among all refutations of the
formula. Ben-Sasson and Wigderson show that lower bound on the width can be
used for proving lower bounds on the resolution size of certain formulas.

Another natural complexity measure is the space. Intuitively the resolution space
of a CNF formula is the minimal number of clauses that must be kept simultaneously
in order to refute a formula. The formal definition [?],[?] is the following:

Definition 1.1 Let k € IN, we say that an unsatisfiable CNF formula ¢ has reso-
lution refutation bounded by space k if there is a series of CNF formulas @1, ..., @s,
such that 1 C @, X € @s, in any p; there are at most k clauses, and for each i < s,
wit1 18 obtained from @; by:

1) Deleting a clause from ;.
2) Adding the resolvent of two clauses from ;.

3) Adding a clause from ¢ (initial clause).

The space needed for the resolution of an unsatisfiable formula is the minimum &
for which the formula has a refutation bounded by space k. Note that initial clauses
do not take much space because they can be added at any moment and at most two
of them are needed simultaneously. The only clauses that consume space are the
ones derived at intermediate stages. In [?, ?] it is shown that resolution refutations
for certain families of formulas need linear space. It was observed in [?] that the
space required for the resolution refutation of a CNF formula ¢, corresponds to the
minimum number of pebbles needed in the following game played on the graph of a
refutation of ¢.

Definition 1.2 Given a connected directed acyclic graph with one sink the aim of
the pebble game is to put a pebble on the sink of the graph, the only node with no
outgoing edges, following this set of rules:

1) A pebble can be placed in any initial node, that is, a node with no predecessors.

2) Any pebble can be removed from any node at any time.
3) A node can be pebbled provided all its parent nodes are pebbled.

3’) 1If all the parent nodes of node are pebbled, instead of placing a new pebble on
it, one can shift a pebble from a parent node.

Lemma 1.3 ([?]) Let ¢ be an unsatisfiable CNF formula. The space needed in a
resolution refutation of ¢ coincides with the number of pebbles needed for the pebble
game played on the graph of a resolution refutation of .

In this paper we consider the restricted case of space in treelike resolution refuta-
tions and show that this complexity measure can be exactly characterized in terms
of a two-person combinatorial game introduced by Impagliazzo and Pudldk in [?].
This game was used for proving lower bounds on the size of treelike resolution refu-
tations [?, ?]. We then use the characterization to give a separation between the
space needed in treelike and general resolution. Although it is known that families
of formulas exist for which there is an exponential separation between the sizes of
their general and treelike resolution refutations [?, ?], a separation between these
two types of resolution for the space measure was not known. We present in Sec-
tion 3 the first such separation. We give a family {F,} of formulas satisfying that
F,, requires treelike resolution refutations of space n — 2 but has general refutation
of space at most %n + 3.

The combinatorial game:

The game is played in rounds on an unsatisfiable formula ¢ in CNF by two
players: Prover and Delayer. Prover wants to falsify some initial clause and Delayer
tries to retard this as much as possible. In each round Prover chooses a variable
in ¢ and asks Delayer for a value for this variable. Delayer can answer either 0,1
or *. In this last case Prover can choose the truth value (0 or 1) for the variable
and Delayer scores one point. The variable is set to the selected value and the next
round begins. The game ends when a clause in ¢ is falsified (all its literals are set to
0) by the partial assignment constructed this way. The goal of Delayer is to score as
many points as possible and Prover tries to prevent this. The outcome of the game
is the number of points scored by Delayer.

Definition 1.4 Let ¢ be an unsatisfiable formula in CNF. We denote by g(p) the
mazximum number of points that Delayer can score while playing the game on ¢ with
an optimal strategy of Prover.

Our main result shows that for an unsatisfiable CNF formula ¢, the space needed
in a treelike resolution refutation of ¢ is exactly g(¢)+ 1. Observe that the outcome
of the combinatorial game depends only on the structure of ¢. This characterization
of treelike resolution space is therefore completely independent of the notion of reso-
lution. We use the characterization and the relations from space and size in treelike

resolution refutation to slightly improve a lower bound for the treelike resolution
size in terms of the points scored in the combinatorial game from [?].

Atserias and Dalmau have given recently [?] a combinatorial characterization
of resolution width that also depends only on the structure of the formula being
considered. These two results point out the naturalness of resolution and its space
and width complexity measures.

2 The Characterization

We show that for an unsatisfiable CNF formula ¢, the number of points that Delayer
can score while playing the game on ¢ provides both an upper and a lower bound
on the treelike resolution space of ¢.

We show first that g(¢) 4+ 1 is an upper bound for the treelike resolution space.

Theorem 2.1 If a CNF formula ¢ requires treelike resolution space S, then De-
layer has a strategy in which at least S —1 points can be scored, that is, S—1 < g(p).

Proof. Let be S the minimum space needed in any treelike resolution refutation
of p. We give a strategy for Delayer for playing the combinatorial game on ¢ that
scores at least S — 1 points with any strategy of Prover. We prove the result by
induction on the number of variables in ¢, n.

For the base case n = 1, ¢ contains just one variable and therefore S < 2.
Delayer just needs to answer * to the only variable asked by Prover.

For n > 1, let = be the first variable asked by Prover and let ¢,—; and @, the
CNF formulas obtained after given value 1 and 0 respectively to variable z in ¢.
Any treelike refutation of ¢ requires S pebbles and therefore either

i) any treelike space for refuting each of ¢,—; and ¢,—¢ is at least S — 1 or

ii) for one of the formulas (say p,—1) the treelike resolution space is at least S.

Any other possibility would imply that ¢ could be refuted in space less than S.
In the first case Delayer can answer % and scores one point. By induction hy-
pothesis Delayer can score .S —2 more points playing the game in any of the formulas
Yg=1 OF @z—p. In the second case Delayer answers the value leading to the formula
that requires treelike resolution space S (z = 1 in this case) and the game is played
on @;—1 in the next round. [|

On the other hand g(¢) is also a lower bound for the treelike resolution space. Let
us consider a resolution refutation of ¢, R, and suppose that Prover and Delayer
play the game on ¢. Delayer follows a strategy scoring at least g(¢) points and
Prover chooses the variables in an order induced by the refutation in the following
way: Prover starts at the empty clause in R and in general at the end of a round
moves to a clause C. In the next round Prover chooses the resolved variable x from
the two parent clauses of C. If Delayer assigns to = a value 0 or 1 then Prover moves

to the parent clause that is falsified by the partial assignment and the new round
starts. If Delayer assigns x value x then Prover can choose value 0 or 1 for x and
moves to the parent clause falsified by the chosen partial assignment. In this case we
mark the clause with . The game ends when Prover can move to an initial clause.

For a refutation R let us denote by game(R) the subgraph of R formed by all the
clauses that can be visited by Prover and the edges joining them in the described
game (with a strategy from Delayer scoring at least g(¢) points). We show that the
pebble game played on game(R) needs at least g(¢) + 1 pebbles. Since game(R)
is a subgraph of R, by Lemma 1.3 this implies that treelike space for ¢ is at least

g(p) + 1.

Theorem 2.2 The treelike space needed for refuting a CNF ¢ is at least g(p) + 1.

Proof. Let R be a treelike resolution refutation of ¢. game(R) is also a tree and
in any path from the empty clause to an initial clause in game(R) there are at least
g(p) nodes marked with x (branching nodes). We will show that game(R) requires
at least g(¢) + 1 pebbles. This implies the result since game(R) is a subgraph of R.

Consider any strategy for pebbling the tree game(R), and consider the first
moment s in which all the paths going from an initial clause to the empty clause
contain a pebble. After moment s — 1 a pebble has to be placed on an initial clause
C, and before that, the path going from C' to the empty clause is the only path
without pebbles. This path contains at least g(¢) nodes marked with *. In each one
of these nodes starts a path going to an initial clause. All these paths are disjoint
and they all contain a pebble at instant s — 1 (otherwise there would be at moment
s a path from the empty clause to some initial clause without any pebble). Together
with the pebble at moment s, this makes at least g(y) + 1 pebbles. []

As mentioned in the introduction, the combinatorial game was defined in [?] as a
tool for proving lower bound for the size of treelike resolution refutation. Impagliazzo
and Pudldk prove the following result:

Theorem 2.3 [?] If Delayer has a strategy on a formula ¢ which scores r points
then any treelike resolution refutation of ¢ has size at least 2.

Based on the relations between size and space in treelike resolution refutations
and the above characterization, we can slightly improve this result by a factor of
two. For this the following result from [?] is needed:

Theorem 2.4 If a CNF formula requires space s then it requires treelike resolution
refutations of size at least 25 — 1.

Together with the combinatorial characterization of treelike resolution space this
implies:

Corollary 2.5 For any unsatisfiable CNF formula @, if Delayer has a strategy on

@ which scores r points then any treelike resolution refutation of ¢ has size at least
or+1 _ 1.

3 A separation between treelike and general resolution
space

We present in this section a family of formulas that require more space when refuted
using treelike resolution than when this is done with general resolution. The formulas
are a particular case of the the pebbling contradictions introduced in [?]. These are
based on the pebbling game and are defined in the following way:

Definition 3.1 Let G = (V, E) be a directed acyclic graph in which every node has
in-degree 0 or 2 and has a unique node with out-degree 0. P(G) denotes the pebbling
formula based on G. For every node v € V. P(G) contains the variables vy and v1.
P(G) defined as the conjunction of the following clauses:

i) A source node s in G (a node with no incoming edges) has associated the source
clause sgs;.

ii) The target node t (the node without outgoing edges) has the two target clauses
to and t, associated to it.

iii) Any nonsource node w with parent nodes u and v has four pebbling clauses
associated: UgDowowi, UgUiwowy, U1Tgwow, and U101 wown .

It is not hard to see that for any directed acyclic graph G (with the required
degree condition) P(G) is a contradiction.

Let T,, denote the complete binary tree with n levels. We give an upper bound
for the space required to resolve P(T,) in general resolution.

For the proof of this result we use the following notation: for a formula ¢ and
a clause C' ¢ F* C' means that C' can be derived from ¢ using resolution space at
most s.

Lemma 3.2 Forn > 5, if P(T,_3) F*72 X\, P(Ty_2) = X\ and P(T,,_1) * X then
P(Ty,) F* .

Proof. We give a resolution strategy for refuting P(T,,) measuring the space
needed. The set of clauses kept at each stage in the refutation can be seen in
Tables 2 and 3. The variables names follow the schematic representation of 7, in
Figure 1. Since P(T,_1) F* X it follows that P(T),) F* boby. This is because all the
clauses in P(T,_1) occurs in P(T}) except for clauses by and b;. Similarly, since
P(T, 5) F*=' X it is also clear that P(T},) F°~! dod;. So we can derive the two
clauses bgb; and dydy using space s by first deriving bgb; in space s, keeping it, and
then deriving dgd;. h The maximum amount of space used until this point is s.

From clauses ag, a1, the pebbling clauses for a (which are initial clauses) and
clause bgb;, we can derive using constant space 3 ¢y and ¢;. This means that from
the stage with the clauses dod; and bypbl we can derive dgd; ¢g and ¢; using space 4
(Table 2).

f
g\e/ d
\/ v

a

Figure 1: Complete tree T,

Now from dydy, ¢y, ¢1 and the pebbling clauses for ¢ we get in space 5 g and e;.
The derivation is very similar to that in Table 2, but now clauses ¢y and ¢; must be
kept in memory as they are not initial clauses. The detailed derivation is in Table 3.

Since P(T,,_3) F*~2 X it follows that P(T,) F*~2 fofi. During this derivation we
have to keep ég and €1, so the maximum amount of space used is s. From fjf1, ég,
€1 and the pebbling clauses for e we get gg and g; in space 5 as in Table 3. Again
as P(T,,_3) F5=2 X it follows clear that P(T,) =2 gog:. From gog1, go and g; we
derive X in space 3. [|

From this results follows the upper bound for the resolution space of P(T),).

Corollary 3.3 For every n, P(T,) has a resolution refutation with space at most
2n/3 + 3.

Proof. The result follows from the fact that for n = 2 mod 3, P(T,) has a
refutation with space at most 2(n + 1)/3 + 1. We prove this by induction on n.
The base case n = 2 is clear since it is easy to check that P(T:) has resolution
refutations of space 3. It also holds that for any n, P(T},11) requires space at most
s + 1 if P(T,) can be refuted using space s. For the induction step, let us suppose
that n = 2 mod 3. By induction hypothesis the space needed for P(T),_3) is at most
2(n — 2)/3 + 1. Using the above property we get that the space needed for (T;,_9)
and for (7}, 1) respectively at most 2(n—2)/3+2 and 2(n—2)/3+3 =2(n+1)/3+1.
By the above lemma P(T},) requires also at most space 2(n +1)/3 + 1. |

On the other hand in the case of treelike resolution, the space needed in a refu-

tation of P(T},) is at most n — 2. This follows our characterization of resolution
space in treelike resolution together with the lower bound obtained in [?] on the

dodi boby

dody boby coboaoay

dody boby cobragay

dody boby cobiagar cobiagay
dody boby Coapay

dody boby Coapay ag

dody boby Coal

dody boby coay a

dody boby Co

dody boby Co &1boagar
dody c1bragar ¢

dody cibragar Gy cibiagay
dody crapay Co

dody crapay Co ag

dody cray Co

dody Craq Co ay

dody ¢ Co

Table 1: Clauses kept in memory during the resolution derivation of ¢; and ¢

number on points obtained by Delayer’s when playing the combinatorial game on
the pebbling formulas. We just need the particular case of this result for complete
trees.

Theorem 3.4 [?] For every n Delayer has a strategy in which at least n — 2 points
can be scored, when playing the combinatorial game on P(T,).

Corollary 3.5 For every n, the space needed in a treelike resolution refutation of
P(T,) is at least n — 2.

4 Conclusions and open problems

We have given an exact characterization of the space required in resolution refuta-
tions of a CNF formula based on a purely combinatorial game and independent of
the resolution method. We also have shown a separation between the space needed
in treelike and general resolution of a particular class of formulas. It remains open
whether the characterization can be adapted to capture the space complexity in
general resolution (without the treelike restriction). This could help to answer the
question of whether there are families of formulas that have resolution refutations of
small size but require a large amount of space, a question proposed by Ben-Sasson
in [?]. We conjecture that the Pebbling Formulas are an example of a family with
this property. These formulas have small resolution size [?] and as we have seen
require a large amount of space in treelike refutations.

€1 Cop dody

c1 Cp dodi ég(ZgCoCl

c1 Cp dody egdicoer

c1 Cp dody egdicoer éodl CoC1
c1 Cp dodi €pCoCl

c1 Cp dody heh)

c1 Cp dodi €o

c1 Cp dody €n élczUCOCl
c1 Cp eidicper €

c1 Cp eirdicper €g élcilcocl
c1 Cp €1cpcy €o

c1 e€ejcy €o

el €o

Table 2: Clauses kept in memory during the resolution derivation of €; and ég

