
Turing Machines With Few Accepting
Computations And Low Sets For PP

Johannes Köblera, Uwe Schöninga, Seinosuke Todab, Jacobo Toránc

aAbteilung Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany
b Department of Computer Sciences, University of Electrocommunications, 1-5-1 Chofugaoka,

Chofu-shi, Tokyo 182, Japan
c Departamento L.S.I., U. Politècnica de Catalunya, Pau Gargallo 5, E-08028 Barcelona,

Spain

1 Introduction

The intractability of the complexity class NP has motivated the study of subclasses that
arise when certain restrictions on the definition of NP are imposed. For example, the
study of sparse sets in NP [Ma82], the study of the probabilistic classes whithin NP
[Gi77], and the study of low sets in NP for the classes in the polynomial time hierarchy
[Sc83], have been three main research streams in the area of complexity theory, and have
clarified many structural aspects of the class NP.

In this paper we study two different ways to restrict the power of NP: We consider
languages accepted by nondeterministic polynomial time machines with a small number
of accepting paths in case of acceptance, and also investigate subclasses of NP that are
low for complexity classes not known to be in the polynomial time hierarchy.

The first complexity class defined following the idea of bounding the number of accep-
ting paths was Valiant’s class UP (unique P) [Va76] of languages accepted by nondeter-
ministic Turing machines that have exactly one accepting computation path for strings
in the language, and none for strings not in the language. This class plays an important
role in the areas of one-way functions and cryptography, for example in [GrSe84] it is
shown that P 6=UP if and only if one-way functions exist. The class UP can be generalized
in a natural way by allowing a polynomial number of accepting paths. This gives rise to
the class FewP defined by Allender [Al85] in connection with the notion of P-printable
sets.

We study complexity classes defined by such path-restricted nondeterministic polyno-
mial time machines, and show results that exploit the fact that the machines for these
classes have a bounded number of accepting computation paths. We will not only con-
sider these subclasses of NP, namely UP and FewP, but also the class Few, an extension
of FewP defined by Cai and Hemachandra [CaHe89], in which the accepting mechanism
of the machine is more flexible.

1

The three classes UP, FewP and Few are all defined in terms of nondeterministic
machines with a bounded number of accepting paths for every input string, but for the
last two classes this number is not known beforehand, and can range over a space of
polynomial size. We show in Section 3 that a polynomial number of accepting paths
implies an exact number of such paths (for another machine). We prove that for every
language L in the mentioned classes a polynomial time nondeterministic machine can
be constructed that has exactly f(x) + 1 accepting paths for strings x in L, and f(x)
accepting paths for strings x that are not in L where f is a polynomial time computable
function. This fact extends a result in [CaHe89], where it was proved that the classes
FewP and Few are included in ⊕P. From our result follows additionally that FewP and
Few are contained in the counting class C=P (exact counting), [Wa86], thus answering a
question proposed in [Sc88].

We use the above result to prove in Section 4 lowness properties of the class Few. The
concept of lowness for the classes in the polynomial time hierarchy was first introduced
in [Sc83]. This idea was translated to the classes in the counting hierarchy in [Tor88a]
and [Tor88b]. Intuitively, a set A is low for a complexity class K if A does not increase
the computational power of K when used as oracle; KA = K. We prove that Few is low
for the complexity classes PP, C=P, and ⊕P (parity-P, [PaZa83]),
showing PPFew=PP, C=PFew = C=P and ⊕PFew = ⊕P.

In Section 5 we consider some other interesting sets that are low for the class PP. We
prove that all sparse sets in NP, as well as the sets in the probabilistic class BPP are
PP-low. The proofs of these results relativize, and as a consequence we obtain more
complex sets than the above ones, that are also PP-low.

The lowness results are used in the last part of the paper to obtain positive relativi-

zations of the questions NP
?
⊆C=P, NP

?
⊆⊕P and ⊕P

?
⊆PP. The corresponding relativized

classes have been separated in [Tor88a], and more recently in [Be88]. We show here that
if the mentioned separations can be done using sparse oracles, then they imply absolute
separations. Results of this kind (positive relativizations) have been obtained before for
the case of the polynomial time hierarchy in [LoSe86] and [BaBoSc86] (see also [Sc85]).

2 Basic Definitions and Results

The notation used althrough the paper is the common one. We present here definitions
of the less known complexity classes mentioned in this article.

Definition 2.1: For a nondeterministic machine M and a string x ∈ Σ∗, let accM(x)
be the number of accepting computation paths of M with input x. Analogously, for a
nondeterministic oracle machine M , an oracle A, and a string x ∈ Σ∗, accA

M(x) is the
number of accepting paths of MA with input x.

2

Definition 2.2: A language L is in the class FewP if there is a nondeterministic poly-
nomial time machine M and a polynomial p such that for every x ∈ Σ∗,

i) accM(x) ≤ p(|x|)

ii) x ∈ L ⇐⇒ accM(x) > 0

By the definition, it is clear that UP⊆FewP⊆NP. Another interesting path-restricted
class, which is not known to be in NP, is the class Few, an extention of FewP with a
more powerful accepting mechanism. This class was introduced by Cai and Hemachandra
in [CaHe89].

Definition 2.3: A language L is in the class Few if there is a nondeterministic polyno-
mial time machine M , a polynomial time predicate Q, and a polynomial p such that for
every x ∈ Σ∗,

i) accM(x) ≤ p(|x|)

ii) x ∈ L ⇐⇒ Q(x, accM(x))

It is obvious that FewP⊆Few. It was shown in [CaHe89] that this class is closed under
bounded truth-table reductions.

We say that a nondeterministic polynomial time machine M is a Few machine if there
is a polynomial p such that for every x ∈ Σ∗, accM(x) ≤ p(|x|).

By applying a binary search technique under the NP oracle {〈x, k〉 | accM(x) ≥ k} it
is easy to see that Few ⊆ PNP[O(log n)]. This is in contrast to the following theorem.

Theorem: Few ⊆ PFewP.

Proof: Let L ∈ Few be witnessed by a Few machine M and a polynomial time predicate
Q, i.e., x ∈ L ⇐⇒ Q(x, accM(x)) for all x ∈ Σ∗. Let p be the polynomial time bound
of M and let q be a polynomial with accM(x) ≤ q(|x|) for all x ∈ Σ∗. Consider the
polynomial time predicate

R(x, y) ⇐⇒ y is accepting path of M on input x.

Then we get accM(x) = ‖{y ∈ Σ≤p(|x|) | R(x, y)}‖ for all x ∈ Σ∗. Define an oracle set in
FewP as follows.

PREFIX = {(x, y) | ∃z : R(x, yz)}.

Using this set as oracle, the following oracle machine M ′ computes accM(x) and deter-
mines the membership of x in L.

3

input: x;
S := {λ}; { λ is the empty string }
k := 0;
repeat

T := ∅;
for all y ∈ S do

begin

if R(x, y) then k := k + 1;
if (x, y0) ∈ PREFIX then T := T ∪ {y0};
if (x, y1) ∈ PREFIX then T := T ∪ {y1}

end;
S := T

until S = ∅;
if Q(x, k) then

accept

else

reject.

M ′ searches through the “prefix tree” whose nodes are labeled with elements of the set
{y | (x, y) ∈ PREFIX}. The search starts at the root and continues level by level, and
the number of y with R(x, y) is counted. Since accM(x) is polynomially bounded, the
cardinality of {y | PREFIX(x, y)} is also polynomially bounded in |x|. Therefore, the
set T can only reach polynomial size in each application of the loop. Since the loop is
repeated at most (p(|x|) + 1) times, the algorithm operates in polynomial time. ⊓⊔

A language in Few can be recognized with only logarithmically many queries to an NP
oracle. In contrast to this, using an oracle in FewP seems to require polynomially many
queries.

Next we define the complexity classes PP, C=P and ⊕P that are also defined conside-
ring the number of computation paths of a nondeterministic machine, but in this case
the number of paths is not necessarily polynomially bounded. These classes were first
introduced in [Gi77],[Wa86], and [PaZa83], respectively.

Definition 2.4: A language L is in the class PP if there is a nondeterministic polynomial
time machine M and a function f ∈ FP such that for every x ∈ Σ∗,

x ∈ L ⇐⇒ accM(x) ≥ f(x).

PP is called CP in the notation of [Wa86]. This notation can be generalized to other
language classes K; a language L is in CK if there is a function f in FP, a polynomial
p and a set A in K such that for every x in Σ∗,

x ∈ L ⇐⇒ ||{y| |y| ≤ p(|x|) and 〈x, y〉 ∈ A}|| ≥ f(x)

4

Definition 2.5: A language L is in the class C=P if there is a nondeterministic polynomial
time machine M and a function f ∈FP such that for every x ∈ Σ∗,

x ∈ L ⇐⇒ accM(x) = f(x).

Definition 2.6: A language L is in the class ⊕P if there is a nondeterministic polynomial
time machine M such that for every x ∈ Σ∗,

x ∈ L ⇐⇒ accM(x) is odd.

It is known that Few⊆ ⊕P [CaHe89] and C=P⊆PP [Ru85]. In [Tor88a] relativizations
are presented under which the classes NP, C=P and ⊕P are all incomparable.

Closely related to the language class PP, is the function class #P, defined by Valiant
in [Va79]

Definition 2.7: A function f : Σ∗ −→ IN is in #P if there is a nondeterministic
polynomial time machine M such that for every x in Σ∗, f(x) = accM(x).

3 Few Accepting Paths Imply an Exact Number of

such Paths

In this section we will show that for every Few machine M and every FP function g :
Σ∗× IN −→ IN, a nondeterministic polynomial time machine M ′ can be constructed with
the property that for every input x ∈ Σ∗, M ′ has exactly accM ′(x) = g(x, accM(x))+2p(|x|)

accepting paths, for a certain polynomial p. From this result follows directly that the
complexity class Few is included in C=P and ⊕P. First we introduce a technical lemma
that will help us to handle the number of accepting paths of a nondeterministic machine.

Lemma 3.1: Let b : Σ∗ × Σ∗ −→ ZZ be a function in FP, q a polynomial, and M a
nondeterministic polynomial time machine. Then there is a nondeterministic polynomial
time machine M ′ and a polynomial r such that for every x ∈ Σ∗,

accM ′(x) =
q(|x|)
∑

k=0

b(x, k)

(

accM(x)

k

)

+ 2r(|x|)

Proof: For machine M , there is a polynomial time predicate Q and a polynomial p such
that for every input string x, accM(x) = ||{y ∈ Σp(|x|) | Q(x, y)}||. Consider machine M ′′

described by the following program:

5

input x;
guess k, 0 ≤ k ≤ q(|x|);
if b(x, k) = 0 then reject

else

guess y ∈ {1, . . . , |b(x, k)|};
guess y1 < . . . < yk ∈ Σp(|x|);
if Q(x, yi) for every i, 1 ≤ i ≤ k

then test :=true

else test :=false;
if (test and b(x, k) > 0) or (¬test and b(x, k) < 0)

then accept

else reject.

For every guessed k, if b(x, k) is positive, then M ′′(x) has b(x, k)
(

accM (x)
k

)

accepting

paths, and it has |b(x, k)| · [
(

2p(|x|)

k

)

−
(

accM (x)
k

)

] accepting paths if b(x, k) is negative.

Therefore, altogether M ′′(x) has

b(x, 0)

(

accM(x)

0

)

+ b(x, 1)

(

accM(x)

1

)

+ . . .+

+b(x, q(|x|))

(

accM(x)

q(|x|)

)

+ h(x)

accepting paths where h is the function in FP defined by

h(x) =
∑

k,b(x,k)<0

|b(x, k)| ·

(

2p(|x|)

k

)

.

Clearly there is a polynomial r such that for every string x ∈ Σ∗, h(x) ≤ 2r(|x|). We
obtain the desired machine M ′ by increasing the number of accepting paths of M ′′. The
computation tree of M ′(x) consists of two subtrees: one of them has exactly 2r(|x|)−h(x)
accepting paths, and the other one is the computation tree of M ′′(x). M ′(x) has then

accM ′(x) = 2r(|x|) − h(x) + accM ′′(x) = 2r(|x|) +
∑q(|x|)

k=0 b(x, k)
(

accM (x)
k

)

accepting paths. ⊓⊔

If the machine considered is a Few machine, then there is a polynomial q bounding
accM , and for every x, accM(x) can only take values in {0, . . . , q(|x|)}. This fact, as we
will see next, allows us to calculate for every function g : Σ∗ × IN −→ IN, values for
b(x, 0), . . . , b(x, q(|x|)) satisfying

q(|x|)
∑

k=0

b(x, k)

(

accM(x)

k

)

= g(x, accM(x)) (∗)

There are two important points to be taken into consideration in the calculation of b: In
first place, the value of

∑q(|x|)
k=0 b(x, k)

(

m
k

)

depends only on the values of b(x, 0), . . . , b(x, m).

6

Therefore, if there are values for b(x, 0), . . . , b(x, m), satisfying equality (∗) in the case
accM(x) ≤ m, the above equality would hold independently of the values given to b(x, m+
1), . . . , b(x, q(|x|)). The second consideration is that after b(x, 0), . . . , b(x, m) have been
given values satisfying (∗) in case accM(x) ≤ m, a value for b(x, m + 1) can be found so
that (∗) is also true in case accM(x) = m + 1. This fact follows from the equality

q(|x|)
∑

k=0

b(x, k)

(

m + 1

k

)

=
m
∑

k=0

b(x, k)

(

m + 1

k

)

+ b(x, m + 1)

from which the value of b(x, m+1) can be obtained from b(x, 0), . . . , b(x, m) and g(x, m+
1). To prove our result it is only left to show that if g ∈FP, then the values of b can also
be computed in polynomial time.

Theorem 3.2: For every Few machine M and every function g in FP from Σ∗ × IN to
IN, there is a nondeterministic polynomial time machine M ′ and a polynomial r such
that for every x ∈ Σ∗, accM ′(x) = g(x, accM(x)) + 2r(|x|).

Proof: Let q be a polynomial such that for every x ∈ Σ∗, accM(x) ≤ q(|x|), and let
b : Σ∗ × IN −→ ZZ be a function in FP satisfying for every m, 0 ≤ m ≤ q(|x|),

q(|x|)
∑

k=0

b(x, k)

(

m

k

)

= g(x, m)

By Lemma 3.1, there is a nondeterministic polynomial time machine M ′ and a polynomial
r with

accM ′(x) =
q(|x|)
∑

k=0

b(x, k)

(

accM(x)

k

)

+ 2r(|x|) = g(x, accM(x)) + 2r(|x|)

accepting paths. As stated above, b(x, k) can be computed inductively:

b(x, 0) := g(x, 0)

b(x, k + 1) := g(x, k + 1) −
k
∑

i=0

b(x, i)

(

k + 1

i

)

for k = 0, . . . , q(|x|) − 1 and b(x, k) := 0 for k > q(|x|). It is clear that if the values of
b do not become too large, then the function is in FP. We will see that these values are
bounded. For a string x ∈ Σ∗ let gmax be the maximum of the values of |g(x, k)|, for
k = 0, . . . , q(|x|). We show by induction on k that

|b(x, k)| ≤ ck := gmax ·2
(
∑k

i=0
i) = gmax ·2

k(k+1)/2

We have

7

|b(x, 0)| ≤ gmax = c0,

|b(x, k + 1)| ≤ gmax +
k
∑

i=0

|b(x, i)| ·

(

k + 1

i

)

≤ gmax +
k
∑

i=0

ci

(

k + 1

i

)

≤ gmax + ck

k
∑

i=0

(

k + 1

i

)

= gmax + ck(2
k+1 − 1)

≤ ck2
k+1 = ck+1

⊓⊔

We use the above result to show the inclusion of Few in the classes C=P and ⊕P.

Corollary 3.3: For every language L in Few there is a nondeterministic polynomial
time machine M ′ and a function f ∈FP such that for every string x ∈ Σ∗:

if x ∈ L then accM ′(x) = f(x) + 1
if x 6∈ L then accM ′(x) = f(x)

Proof: Let L be a language in Few, M a Few machine and Qa polynomial time predicate
such that for every string x, x ∈ L ⇐⇒ Q(x, accM(x)). Define function g as

g(x, m) =
{

1 if Q(x, m)
0 if ¬Q(x, m)

By Theorem 3.2, there is a nondeterministic polynomial time machine M ′ and a poly-
nomial r with accM ′(x) = g(x, accM(x)) + 2r(|x|), therefore

accM ′(x) =

{

2r(|x|) + 1 if x ∈ L

2r(|x|) if x 6∈ L

The result follows since the function f defined by f(x) := 2r(|x|) is in FP. ⊓⊔

Corollary 3.4:

i) Few ⊆ C=P

ii) Few ⊆ ⊕P [CaHe89]

Part i) of the corollary answers an open problem proposed in [Sc88].

8

4 Lowness of Few

We will see in this section that the class Few is low for the complexity classes PP, C=P and
⊕P. The concept of lowness for classes in the polynomial time hierarchy was introduced
in [Sc83]. We extend the concept here to other complexity classes.

Definition 4.1: For a language L and a complexity class K (which has a senseful
relativized version K()), we will say that L is low for K (L is K–low) if KL = K. For a
language class C, C is low for K if for every language L in C, KL = K.

In order to show the lowness properties of Few, first we need a lemma which states
that a nondeterministic machine querying an oracle in Few can be simulated by another
machine of the same type with the same number of accepting paths that queries just one
string on every path to another oracle in Few.

Lemma 4.2: For every nondeterministic polynomial time machine M and every lan-
guage A ∈Few, there is a nondeterministic polynomial time machine M ′ and a language
A′ ∈FewP such that for every x ∈ Σ∗, accA

M(x) = accA′

M ′(x) and M ′(x) queries just one
string to the oracle in every computation path.

Proof: Let M be a polynomial time nondeterministic machine, with an oracle A in
Few. There is a polynomial time predicate Q and a Few machine M ′′ such that for every
x ∈ Σ∗, x ∈ A ⇐⇒ Q(x, accM ′′(x)).

Consider the nondeterministic oracle machine M ′ described by the following algorithm:

input x;
guess w = (z, (q1, y

1
1, . . . , y

1
i1
), . . . , (qk, y

k
1 , . . . , y

k
ik
))

{ computation path of M , queries made to the oracle following this path,
and accepting computation paths of machine M ′′ for the guessed queries }
if z is an accepting path for M(x) in which exactly the sequence of oracle
queries q1, . . . , qk is made, and every query qj is answered “yes” if and only if
Q(qj, ij), and for every j, y

j
1 < . . . < y

j
ij , and y

j
1, . . . , y

j
ij are accepting paths

of M ′′(qj) then

if w ∈ A′ then reject
else accept

end.

The oracle for the algorithm is the set A′ ∈FewP

A′ = {(z, (q1, y
1
1, . . . , y

1
i1), . . . , (qk, y

k
1 , . . . , y

k
ik
)) | ∃ j, y such that

y is an accepting path of M ′′(qj) and y 6= y
j
1, . . . , y

j
ij}

9

The algorithm guesses the accepting computation paths for the queries of M , and then
checks that it has not guessed “too many” of these paths. Then, the query to A′ (answe-
red negatively) assures that all such paths have been guessed, and therefore membership
in A of the queries made by machine M , is correctly decided. Observe that there is a
polynomial p (depending on A and M) such that for every input string x, and every
guessed string w in M ′ that leads to acceptance, |w| ≤ p(|x|), and therefore the machine
runs in polynomial time. Note also that in every accepting computation path, the answer
to the oracle has to be answered negatively.

Oracle set A′ belongs to FewP since A ∈Few, and therefore for every possible query qj,
there are at most a polynomial number of accepting paths for machine M ′′ with input
qj . ⊓⊔

Theorem 4.3: For every nondeterministic polynomial time oracle machine M and
every language A ∈Few, there is a nondeterministic polynomial time machine M ′ and a
polynomial q such that for every x ∈ Σ∗, accM ′(x) = accA

M(x) + 2q(|x|).

Proof: Let M be a nondeterministic polynomial time machine and A a language in Few.
By (the proof of) Lemma 4.2, it is not hard to see that there is a predicate R ∈FewP,
and a polynomial p such that for every x ∈ Σ∗, accA

M(x) = ||{y ∈ Σp(|x|) | ¬R(x, y)}||.
By Theorem 3.2, there is a nondeterministic polynomial time machine M ′′ and a

polynomial r such that for every pair (x, y), M ′′(x, y) has exactly 2r(|(x,y)|) accepting
paths if R(x, y) is true, and it has exactly 2r(|(x,y)|) +1 accepting paths otherwise. Define

a function h by h(x) = 2r(|(x,0p(|x|))|), and consider the following nondeterministic machine
M ′:

With input x, M ′ guesses a string y of length p(|x|). Then M ′ simulates M ′′

with input (x, y).

M ′(x) has then 2p(|x|)h(x) + ||{y ∈ Σp(|x|) | ¬R(x, y)}|| = 2p(|x|)h(x) + accA
M(x) accepting

paths. A small modification of M ′ increases the number of its accepting paths, as in
the proof of Lemma 3.1. Therefore, it follows that there is a polynomial q for which
accM ′(x) = accA

M(x) + 2q(|x|). ⊓⊔

A direct consequence of the above theorem is that Few is low for the classes PP, C=P
and ⊕P.

Corollary 4.4:

i) Few is PP-low.

ii) Few is C=P-low.

iii) Few is ⊕P-low.

10

Observe that the last result in the corollary can also be obtained as a consequence of the
results Few⊆ ⊕P [CaHe89] and ⊕P⊕P = ⊕P [PaZa83].

It is not hard to see, looking at the proofs, that the above results relativize. More
precisely, for every oracle set A, the classes PPFewA

, C=PFewA

and ⊕PFewA

, are included
in PPA, C=PA and ⊕PA, respectively. We will make use of the relativized version of the
results in Section 6.

5 Other Low Sets for PP

In this section we show that sparse sets in NP and BPP sets are low for PP. It is
interesting to observe that these two classes of sets have also been shown to be low for
complexity classes in the polynomial time hierarchy (NP∩SPARSE is low for ∆p

2, and
BPP is low for Σp

2 [KoSc86], [ZaHe86], [Sch85]), as opposed to the class Few which is not
known to be low for any class in PH.

To obtain the results we need the following technical lemma which is straightforward
to prove:

Lemma 5.1: Let L ⊆ Σ∗ be a language and A an oracle set. The following statements
are equivalent:

i) L is in PPA.

ii) There are two functions f, g : Σ∗ −→ IN, f ∈FP and g ∈ #PA such that

L = {x ∈ Σ∗ | g(x) > f(x)}

iii) There are two functions f, g : Σ∗ −→ IN, f, g ∈ #PA such that

L = {x ∈ Σ∗ | g(x) > f(x)}

Theorem 5.2: NP∩SPARSE is low for PP.

Proof: Let A ∈ NP ∩ SPARSE and p be a polynomial such that ‖A≤n‖ ≤ p(n). Let
A = L(MA) for a nondeterministic machine MA and let q be a polynomial time bound
for MA.
By Lemma 5.1, for L ∈ PPA there is an NP oracle acceptor M and a function f ∈ FP
such that

x ∈ L =⇒ accA
M(x) > f(x)

x 6∈ L =⇒ accA
M(x) < f(x)

11

Let r be a polynomial time bound for M and let mx := ‖A≤r(|x|)‖. We construct M1, M2

such that
x ∈ L =⇒ accM1(〈x, mx〉) > accM2(〈x, mx〉)
x 6∈ L =⇒ accM1(〈x, mx〉) < accM2(〈x, mx〉)

Mk: input 〈x, i〉;
if i > p(r(|x|)) then reject;

(∗) guess a set S ⊆ A≤r(|x|), ‖S‖ = i;
k = 1: simulate MS(x).
k = 2: guess y ∈ {1, . . . , f(x)}.

Step (∗) is implemented by

guess a1 < · · · < ai ∈ Σ≤r(|x|);
guess w1, . . . , wi ∈ Σ≤q(r(|x|));
if ∀j : wj is an accepting path of MA(aj)

then continue (“S = {a1, . . . , ai}”)
else reject;

There is a polynomial t such that

accMk
(〈x, i〉) < 2t(|x|)

We can define NP acceptors M ′
1, M

′
2 such that

accM ′
k
(x) =

p(r(|x|))
∑

i=0

accMk
(〈x, i〉)2it(|x|)

We then have

x ∈ L =⇒ accM1(x, mx) > accM2(x, mx) =⇒ accM ′
1
(x) > accM ′

2
(x)

x 6∈ L =⇒ accM1(x, mx) < accM2(x, mx) =⇒ accM ′
1
(x) < accM ′

2
(x)

⊓⊔

At this point, the natural question to ask is whether sparse sets in NP are also low for
the classes C=P and ⊕P. We believe that this might not be the case, or at least would be
very hard to prove, since in [Tor88a] it is shown that there is a relativization separating
the class of sparse sets in NP from C=P and from ⊕P, and therefore these sets cannot be
low for C=P and for ⊕P in the relativized case.

The proof technique from Theorem 5.2 can be used to show another interesting result
related with bounded query classes [BoLoSe84]. Let Q(M, x, A) denote the set of queries
made by machine M with oracle A on input x. Let Q(M, x) =

⋃

A Q(M, x, A), and let
PPb(A) denote the class of sets accepted by oracle PP-machines satisfying that for some
polynomial p, ||Q(M, x)|| ≤ p(|x|), for every input x. By using a modification of the

12

technique shown above, it can be proved that PPb(NP)=PP. As an immediate conse-
quence, we have PNP[log] included in PP, a result that was first proved in [BeHeWe89].
These considerations will appear in the paper [Tod89].

We observe next that the probabilistic class BPP is also PP-low.

Theorem 5.3: BPP is low for PP.

Proof: Let L be in PP A for a set A ∈ BPP . There is an NP oracle acceptor M and a
polynomial p ≥ 1 such that (|x| = n)

x ∈ L ⇐⇒ accA
M(x) ≥ 2p(n)−1 + 1.

Because P BPP = BPP , there is a BPP-predicate Q such that for all x, |x| = n,

x ∈ L ⇐⇒ ‖{y ∈ Σp(n) | Q(x, y)}‖ ≥ 2p(n)−1 + 1.

By the amplification lemma for BPP we can find a P-predicate R and a polynomial q

such that

Q(x, y) =⇒ ‖{z ∈ Σq(n) | R(x, y, z)}‖ ≥ (1 − 2−2p(n))2q(n)

¬Q(x, y) =⇒ ‖{z ∈ Σq(n) | R(x, y, z)}‖ ≤ 2−2p(n)2q(n)

We now have

x ∈ L =⇒ ‖{yz ∈ Σp(n)+q(n) | P (x, y, z)}‖ ≥ (2p(n)−1 + 1)(1 − 2−2p(n))2q(n)

x 6∈ L =⇒ ‖{yz ∈ Σp(n)+q(n) | P (x, y, z)}‖ ≤ (2p(n)−1 + 2p(n)−1−2p(n))2q(n)

and therefore L is in PP, since 2p(n)2−2p(n) < 1−2−2p(n) (the sum over all error probabilities
is less than the probability gained by one accepting path of M). ⊓⊔

We finish this section making the observation that the above two lowness proofs rela-
tivize (as well as the ones from previous sections), and one can use this fact to obtain
“more complex” low sets. For example if a set A is low for PP, then if L is sparse and
in NPA, then L is also low for PP, since PPL is in PPA and therefore also in PP.

6 Positive Relativizations

The complexity classes NP, PP, C=P and ⊕P seem all to be different, although a proof
of any separation would imply immediately P6=PSPACE, and therefore the question is
hard to answer. It is easier to separate the classes in relativized worlds; this has been
done in [Tor88a] and in [Be88]. We will show here that if the relativized separation of
the classes could be done using sparse oracles, then this would imply that the classes are

13

different. Actually, the separation results in [Tor88a] are done with non-sparse oracles.
These results are on the same line as the positive relativizations for the classes in the
polynomial time hierarchy obtained in [LoSe86] and [BaBoSc86].

Definition 6.1: For a language A define the function printA : {0}∗ −→ Σ∗ as

printA(0n) = 〈a1, a2, . . . , ak〉

where a1, a2, . . . , ak are the lexicographically first strings in A of length less than or equal
to n.

Lemma 6.2: Let S be a sparse language. The function printS can be computed in
polynomial time relative to an oracle in FewPS.

Proof: For a sparse language S, consider the set

LS = {〈y, z〉 | there is a string w ∈ S, such that y ≤ w < z (in lex. order)}

LS is in FewPS since for every string 〈y, z〉 there is only a polynomial number of strings
between y and z in S, and therefore there is only a polynomial number of possible
witnesses for membership of 〈y, z〉 in LS. The function 0n 7→ printS(0n) can be computed
in polynomial time by iterating a binary search process in LS. ⊓⊔

Theorem 6.3:

i) NP ⊆ C=P⇐⇒ for every sparse oracle S, NPS ⊆ C=PS.

ii) NP ⊆ ⊕P⇐⇒ for every sparse oracle S, NPS ⊆ ⊕PS.

iii) ⊕P ⊆ PP⇐⇒ for every sparse oracle S, ⊕PS ⊆ PPS.

Proof: i) The direction from right to left is straightforward. For the other direction,
let S be a sparse set and let A be a language in NPS computed by a nondeterministic
polynomial time machine M . Consider the set

A′ = {〈x, a1, . . . , ak〉 | M accepts x with oracle {a1, . . . , ak} }

There is a polynomial q such that for every string x ∈ Σ∗,

x ∈ A ⇐⇒ 〈x, printS(0q(|x|))〉 ∈ A′.

It is clear that A′ ∈NP and by the hypothesis, A′ ∈ C=P. Therefore, by Lemma 6.2, in
order to compute A we need first a computation in PFewP S

to obtain printS(0q(|x|)), and
then a C=P predicate to decide whether 〈x, printS(0q(|x|))〉 belongs to A′. Therefore, A ∈
C=PFewPS

, but by the (relativized version of the) lowness results of Section 4, C=PFewPS

=
C=PS.

14

For ii) and iii), the proof is completely analogous, considering that by the results of
Section 4, FewP is also low for ⊕P and for PP. ⊓⊔

Acknowledgement

The third author would like to thank Osamu Watanabe for useful discussions about this
investigation.

References

[Al85] E.W. Allender. Invertible Functions. Ph.D. dissertation, Georgia Inst. of Techn.,
1985.

[BaBoSc86] J.L. Balcázar, R.V. Book, and U. Schöning. The polynomial-time hierarchy
and sparse oracles. Journ. Assoc. Comput. Mach. 33 (1986): 603–617.

[Be88] R. Beigel. Relativized counting classes: Relations among thresholds, parity, and
mods. Manuscript (1988).

[BeHeWe89] R. Beigel, L.A. Hemachandra and G. Wechsung. PNP[log] ⊆PP. Forth Struc-

ture in Complexity Theory Conf., IEEE, 1989.

[BoLoSe84] R. Book, T.J. Long and A. Selman. Quantitative relativizations of comple-
xity classes. SIAM Jour. Comp. 13 (1984): 461–487.

[CaHe89] J. Cai and L.A. Hemachandra. On the power of parity. Symp. Theor. Aspects

of Comput. Sci., Lecture Notes in Computer Science, Springer-Verlag, (1989), 229–240.

[Gi77] J. Gill. Computational complexity of probabilistic complexity classes. SIAM

Journ. Comput. 6 (1977): 675–695.

[GrSe84] S. Grollmann and A.L. Selman. Complexity measures for public-key crypto-
systems. 25th Symp. Found. Comput. Sci., 495-503, IEEE, 1984.

[KoSc86] K.I. Ko and U. Schöning. On circuit-size complexity and the low hierarchy in
NP. SIAM Jour. Comput. 14 (1986): 41–51.

[LoSe86] T.J. Long and A.L. Selman. Relativizing complexity classes with sparse sets.
Journ. of the Assoc. Comput. Mach. 33 (1986): 618–628.

[Ma82] S.A. Mahaney. Sparse complete sets for NP: solution of a conjecture of Berman
and Hartmanis. Journ. Comput. Syst. Sci. 25 (1982): 130–143.

[PaZa83] C.H. Papadimitriou and S.K. Zachos. Two remarks on the power of counting.
6th GI Conf. on Theor. Comput. Sci., Lecture Notes in Computer Science 145, 269–276,
Springer-Verlag, 1983.

15

[Sc83] U. Schöning. A low and a high hierarchy within NP. Journ. Comput. Syst. Sci.

27 (1983): 14–28.

[Sc85] U. Schöning. Complexity and Structure. Lecture Notes in Computer Science 211,
Springer-Verlag, 1985.

[Sc88] U. Schöning. The power of counting. Proc. 3rd Structure in Complexity Theory

Conf., 2–9, IEEE, 1988.

[Tod89] S. Toda. On restricted access to NP oracles in probabilistic computations.
Manuscrip, 1989.

[Tor88a] J. Torán. Structural Properties of the Counting Hierarchies. Doctoral disserta-
tion, Facultat d’Informatica, UPC Barcelona, Jan. 1988.

[Tor88b] J. Torán. An oracle characterization of the counting hierarchy. Proc. 3rd

Struct. Complexity Theory Conf., 213–223, IEEE, 1988.

[Va76] L.G. Valiant. The relative complexity of checking and evaluating. Inform. Proc.

Lett. 5 (1976): 20–23.

[Va79] L.G. Valiant. The complexity of computing the permanent. Theoret. Comput.

Sci. 8 (1979): 410–421.

[Wa86] K.W. Wagner. The complexity of combinatorial problems with succinct input
representation. Acta Inform. 23 (1986): 325–356.

[ZaHe86] S. Zachos and H. Heller. A decisive characterization of BPP. Information and

Control 69 (1986): 125–135.

16

